VECTOR INSTITUTE

Proximal Point Method	APO Algorithm
 Many optimization algorithms used in machine learning can be seen as approximations to an idealized algorithm called the proximal point method (PPM). The stochastic PPM iteratively minimizes a loss J_B: ℝ^m → ℝ on a mini-batch B, plus a proximity term that penalizes the discrepancy from the current iterate: θ^(t+1) ← arg min J_{B^(t)}(u) + λ_{WSD}D_W(u, θ^(t)) + λ_{FSD}E_{x̃}[D_F(u, θ^(t), x̃)] function-space discrepancy Here, D_F(u, θ^(t), x̃) = ρ(f(x̃; u), f(x̃; θ^(t))), where ρ is an output-space discrepancy function. 	Current Parameters $\theta \longrightarrow \theta' = \theta - P \nabla_{\theta} \mathcal{J}_{\mathcal{B}}(\theta) \longrightarrow \theta'(\phi)$ $\mathcal{B} \longrightarrow \mathcal{B}' = \theta - P \nabla_{\theta} \mathcal{J}_{\mathcal{B}}(\theta) \longrightarrow \theta'(\phi)$ Mini-batch for Gradient Step In each meta-optimization step, we perform a updated parameters $\theta'(\phi)$, where ϕ denotes LR η or preconditioner P). Then ϕ is updated
$\begin{split} & \frac{\text{Method}}{\text{Gradient Descent}} \frac{\text{Loss Approx. FSD WSD}}{\text{Gradient Descent}} \\ & \frac{1^{\text{st-order}} & - & \checkmark}{\text{Hessian-Free}} \\ & \frac{2^{\text{nd-order}} & - & \checkmark}{\text{Natural Gradient}} \\ & \frac{1^{\text{st-order}} & 2^{\text{nd-order}} & \times}{\text{Exact}} \\ & \frac{2^{\text{nd-order}}}{\text{Minimizing the proximal objective exactly is uneconomical.}} \\ & \text{Minimizing the proximal objective exactly is uneconomical.}} \\ & \text{Various first- and second-order optimization algorithms can} \\ & \text{be interpreted as minimizing approximations of the} \\ & \text{proximal objective, using } 1^{\text{st}} \text{ or } 2^{\text{nd}} \text{ order Taylor expansions} \\ & \text{of the loss or FSD terms.}} \\ & \text{When taking a } 1^{\text{st-order approximation to the loss and a} \\ & 2^{\text{nd-order approximation to the FSD, the update rule is} \\ & \text{given in closed form as:} \\ & \theta^{(t+1)} \approx \theta^{(t)} - (\lambda_{\text{FSD}}\mathbf{G} + \lambda_{\text{WSD}}\mathbf{I})^{-1} \nabla_{\theta} \mathcal{J}_{\mathcal{B}}(\theta^{(t)}), \end{split}$	while not converged, iteration t do $\mathcal{B} \sim \mathcal{D}_{train}$ \triangleright Sample mini-batch to consider the mod $K = 0$ then \triangleright Performs $\mathcal{B}' \sim \mathcal{D}_{train}$ \triangleright Sample additional mines $\theta'(\phi) := u(\theta, \phi, \mathcal{B})$ \triangleright Compute $\mathcal{Q}(\phi) := \mathcal{J}_{\mathcal{B}}(\theta'(\phi)) + \frac{\lambda_{FSD}}{ \mathcal{B}' } \sum_{(\tilde{\mathbf{x}}, \cdot) \in \mathcal{B}'} \mathcal{D}_{F}(\Phi)$ $\phi \leftarrow \phi - \alpha \nabla_{\phi} \mathcal{Q}(\phi)$ end if $\theta \leftarrow u(\theta, \phi, \mathcal{B})$ end while • Compute Cost: Computing $\nabla_{\phi} \mathcal{Q}(\phi)$ requises through the 1-step unrolled computations meta-update once every K iterations. • Memory Cost: APO requires 2× the mode
where ${f G}$ is the Hessian of the FSD term.	APO for Learning Rate Adaptation
Amortized Proximal Optimization (APO)	• One use case of APO is to tune hyperparametry tuning the LR for SGD, we have $oldsymbol{\phi}=\eta$ and $oldsymbol{\phi}$
 Consider an update rule <i>u</i> parameterized by a vector φ which updates the network weights θ on a mini-batch B^(t): θ^(t+1) ← u(θ^(t), φ, B^(t)) We propose to directly minimize a proximal meta-objective with respect to the optimization parameters φ: Q(φ) = E_{B~D} [J_B(u(θ, φ, B)) + λ_{FSD}E_{(x̄,·)~D} [D_F(u(θ, φ, B), θ, x̄)] + (λ_{WSD}/2) u(θ, φ, B) - θ ²]. By adapting a parametric update rule, we can amortize the cost of minimizing the proximal objective over training. 	APO for Structured Preconditioner Adapta • APO can adapt the preconditioning matrix P flexibly represent various second-order update • Under appropriate assumptions, the optimal P equivalent to different 2 nd -order updates, dep • To scale to large neural nets, we use the EKF which also ensures that P is PSD. For the we represent the preconditioning matrix as the p $P_S = (A \otimes B) diag(vec)$ • While EKFAC uses complicated covariance es- decomposition to construct the block matrice

Method	Loss Approx.	FSD	WSD
Gradient Descent	1 st -order	_	\checkmark
Hessian-Free	2 nd -order	_	\checkmark
Natural Gradient	$1^{\sf st}$ -order	2 nd -order	×
Proximal Point	Exact	Exact	\checkmark

$$\boldsymbol{\theta}^{(t+1)} \approx \boldsymbol{\theta}^{(t)} - (\lambda_{\mathsf{FSD}} \mathbf{G} + \lambda_{\mathsf{WSD}} \mathbf{I})^{-1} \nabla_{\boldsymbol{\theta}} \mathcal{J}_{\mathcal{B}}(\boldsymbol{\theta}^{(t)})$$

$$oldsymbol{ heta}^{(t+1)} \leftarrow u(oldsymbol{ heta}^{(t)}, oldsymbol{\phi}, \mathcal{B}^{(t)})$$

$$\begin{split} \mathcal{Q}(\boldsymbol{\phi}) = & \mathbb{E}_{\mathcal{B}\sim\mathcal{D}} \Big[\mathcal{J}_{\mathcal{B}}(\boldsymbol{u}(\boldsymbol{\theta},\boldsymbol{\phi},\mathcal{B})) \\ &+ \lambda_{\mathsf{FSD}} \mathbb{E}_{(\tilde{\mathbf{x}},\cdot)\sim\mathcal{D}} \left[D_{\mathsf{F}}(\boldsymbol{u}(\boldsymbol{\theta},\boldsymbol{\phi},\mathcal{B}),\boldsymbol{\theta},\tilde{\mathbf{x}}) \right] \\ &+ \frac{\lambda_{\mathsf{WSD}}}{2} \| \boldsymbol{u}(\boldsymbol{\theta},\boldsymbol{\phi},\mathcal{B}) - \boldsymbol{\theta} \|^{2} \Big]. \end{split}$$

Amortized Proximal Optimization *Juhan Bae^{1,2}, *Paul Vicol^{1,2}, Jeff Z. HaoChen³, Roger Grosse^{1,2} * denotes equal contribution, ¹University of Toronto, ²Vector Institute, ³Stanford University

a one-step lookahead to obtain optimization parameters (e.g. the ed via the meta-gradient $\nabla_{\phi} \mathcal{Q}(\phi)$.

compute the gradient and loss term orm meta-update every K iterations ini-batch to compute the FSD term te the 1-step lookahead parameters $(oldsymbol{ heta}'(oldsymbol{\phi}),oldsymbol{ heta}, ilde{\mathbf{x}})+rac{\lambda_{ extsf{WSD}}}{2}\|oldsymbol{ heta}'(oldsymbol{\phi})-oldsymbol{ heta}\|_2^2$ Update optimizer parameters

▷ Update model parameters

ires 3 forward passes + a backward n graph. We perform a

I memory for the 1-step unroll.

eters of an existing optimizer: when $u_{\text{SGD}}(\boldsymbol{\theta},\eta,\mathcal{B}) = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{J}_{\mathcal{B}}(\boldsymbol{\theta})$

ation

, allowing the update rule to es.

P that minimizes $Q(\mathbf{P})$ is pending on the choice of FSD. FAC structured parameterization, veight matrix W of a layer, we product of smaller matrices:

 $(\mathsf{S}))^2(\mathsf{A}\otimes\mathsf{B})^{-1}$

stimation and eigenvalue es, in APO, we meta-learn these

Preconditioner Tuning Experiments

Low Precision (16-bit) Training

Task	Model	SGDm	KFAC	APO-P
CIFAR-10	LeNet	75.65	74.95	77.25
CIFAR-10	ResNet-18	94.15	92.72	94.79
CIFAR-100	ResNet-18	73.53	73.12	75.47

Learning Rate Adaptation

- with the step schedule.

Regression Tasks

Classification Tasks

del	SGDm	Adam	KFAC	APO-P
Vet	75.73	73.41	76.63	77.42
Net	76.27	76.09	78.33	81.14
G16	91.82	90.19	92.05	92.13
et-18	93.69	93.27	94.60	94.75
Net	43.95	41.82	46.24	52.35
G16	65.98	60.61	61.84	67.95
et-18	76.85	70.87	76.48	76.88
former	31.43	34.60	-	34.62

• Low-precision training presents a challenge for second-order optimizers such as KFAC which rely on matrix inverses that may be sensitive to quantization noise. • APO does not require inversion, and remains stable.

• Test accuracy and learning rate adaptation for WRN-28-10 on CIFAR-10, using SGDm as the base optimizer. • APO outperforms the best fixed LR, and is competitive