
Amortized Proximal Optimization:
Meta-Learning a Parametric Update Rule via a Proximal Meta-Objective

Juhan Bae*, Paul Vicol*, Jeff Z. Haochen, Roger Grosse

Slides by Paul Vicol



Outline

● Background: Proximal Point Method

○ Different types of discrepancy measures (weight-space and function-space)

○ Connections Between Proximal Optimization and 2nd-Order Optimization

● Amortized Proximal Optimization (APO)

○ Algorithm

○ Computation & Memory Cost

● APO for Structured Preconditioner Adaptation

● APO for Learning Rate Adaptation

● Experimental Results



The Proximal Point Method

● Many algorithms in machine learning can be interpreted as approximations to an idealized 
algorithm called the proximal point method (PPM)

Minimize the loss on 
the current minibatch

While staying close to 
the current iterate



The Proximal Point Method

● Many algorithms in machine learning can be interpreted as approximations to an idealized 
algorithm called the proximal point method (PPM)

Minimize the loss on 
the current minibatch

While staying close to 
the current iterate

● How do we measure proximity to the previous iterate,                   ?

● Several classic algorithms can be interpreted as balancing between two types of proximity:

Function-Space Discrepancy (FSD) Weight-Space Discrepancy (WSD)



The Proximal Point Method
● To gain intuition, let’s see what happens when we minimize the proximal objective exactly.
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The Proximal Point Method

Makes a small change to the 
parameters but a global 
change to the outputs.
Fits the current example but 
also changes the predictions 
on other data.

Makes a sharp change to 
the outputs to fit the current 
example while maintaining 
the previous outputs on 
other data.

Including both FSD and 
WSD terms yields a 
smoother update to the 
function.

● To gain intuition, let’s see what happens when we minimize the proximal objective exactly.



Connections to Second-Order Optimization

● Minimizing the proximal objective exactly in each iteration is uneconomical
● Various first- and second-order optimization algorithms can be interpreted as minimizing 

approximations of the proximal objective
○ Taking 1st or 2nd order Taylor expansions of the loss or FSD terms allows for closed-form solutions
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Amortized Proximal Optimization (APO)
● Consider an update rule u parameterized by a vector of optimization parameters

● APO tunes the optimization parameters phi to minimize a proximal meta-objective             :

● Examples:

● By adapting a parametric update rule, we can amortize the cost of minimizing the proximal objective 
over the course of training



● TODO: Describe the prevailing paradigm in deep learning, which stacks layers, each of which 
performs a specific input/output operation

● TODO: This has obviously been successful, and the trend is towards ever-increasing architecture 
depth. What happens if we take the number of layers to infinity?

APO Algorithm
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● TODO: Describe the prevailing paradigm in deep learning, which stacks layers, each of which 
performs a specific input/output operation

● TODO: This has obviously been successful, and the trend is towards ever-increasing architecture 
depth. What happens if we take the number of layers to infinity?

Computation and Memory Cost of APO

● Computation: Computing the meta-gradient requires 3 forward passes + a backward 
pass through the 1-step unrolled computation graph.

○ But we only perform a meta-update once every K iterations

● Memory: APO requires 2x the model memory for the 1-step unroll



APO for Adaptive Preconditioning

● APO can be used to learn the preconditioning matrix for second-order optimization
● How should we parameterize the preconditioner?

We want the preconditioner to be positive semi-definite, to maintain descent directions1

We want the preconditioner to be tractable to store and compute with2

Two desiderata:
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APO for Adaptive Preconditioning

● In practice, we use the EKFAC-structured preconditioner:

● EKFAC uses complicated covariance estimation and matrix inversion to construct the block 
matrices

● In contrast, APO directly meta-learns the matrices 

● APO does not require inverting (or performing eigendecompositions of) the block matrices
● → Our structured representation incurs less computation per iteration than EKFAC. 



APO Can Recover Classic 2nd-Order Methods

● If we make the same assumptions used to derive natural gradient, then the optimal 
preconditioner P that minimizes the one-step lookahead meta-objective corresponds to the 
damped natural gradient update:



APO Can Recover the KFAC Update



Experiments: Poorly-Conditioned Problems

● Using APO to tune the preconditioner works well on poorly-conditioned tasks where 
second-order optimizers are typically required



Experiments: UCI Regression Tasks

● APO-Precond outperforms 1st and 2nd-order baselines (including Shampoo and KFAC) on UCI 
regression tasks

○ Typically, APO-Precond converges more quickly and reaches lower training loss



Experiments: Architectures on CIFAR-10/100
● We evaluated the generalization of a variety of APO-trained models on CIFAR-10/100

○ Tuned LR, weight decay, etc. separately for each task.



Low-Precision (16-bit) Training

● Low-precision training presents a challenge for second-order optimizers such as KFAC 
○ These rely on matrix inverses that may be sensitive to quantization noise.

● APO does not require inversion, and remains stable



LR Adaptation: MNIST

● APO can be used to tune the global learning rate for 
a variety of base optimizers

○ Including SGD, SGDm, RMSprop, Adam

● The lambda hyperparameters for APO need to be 
searched over, but each lambda setting yields a 
learning rate schedule

● Here, we tuned the LR for training an MLP on 
MNIST, with SGDm and RMSprop



LR Adaptation: MNIST
● The APO-adapted LR schedules usually outperform optimal fixed LRs, and are competitive 

with manual step decay schedules
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LR Adaptation: Robustness to the Initial LR
Robustness to the Initial Learning Rate — Across 6 Orders of Magnitude



LR Adaptation: Robustness to the Initial LR
Robustness to the Initial Learning Rate — Across 6 Orders of Magnitude

Robustness to the Meta-Update Frequency



On Short-Horizon Bias
● APO is a greedy method—it only considers the effect of the optimization parameters through a 

one-step lookahead → Does APO suffer from short-horizon bias?
● Original short-horizon bias meta-objective: 



On Short-Horizon Bias
● APO is a greedy method—it only considers the effect of the optimization parameters through a 

one-step lookahead → Does APO suffer from short-horizon bias?

1

2

● Original short-horizon bias meta-objective: 



On Short-Horizon Bias
● APO is a greedy method—it only considers the effect of the optimization parameters through a 

one-step lookahead → Does APO suffer from short-horizon bias?

1

2

2

1 1

2
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Thank you!


