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MULTI-AGENT BELIEF CHANGE

= We have a network of agents
= Each agent has some initial beliefs about the state of the world
= Agents communicate and share information

= Goal: Determine what each agent believes after learning as much as
possible from other agents

= My research deals with ways to do this
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DECLARATIVE PROBLEM SOLVING




TRADITIONAL IMPERATIVE PROGRAMMING

= Convert a problem specification into imperative code that solves
instances of the problem

= Deal with algorithms and data structures
= The focus is on how to solve the problem
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DECLARATIVE PROBLEM SOLVING

= Directly encode the problem specification using a modeling language
= How do we solve the problem? vs What is the problem?
= Focus on how to describe the problem
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DECLARATIVE PROBLEM SOLVING

= Write your problem in a formal representation (i.e. using logic)

= The representation defines an implicit search space, and gives a
description of a solution

= An off-the-shelf solver takes the representation and finds its logical
models

= The problem representation should be such that these models
represent solutions



WHAT IS ANSWER SET PROGRAMMING?

= ASP is a declarative problem-solving paradigm that combines an
expressive modeling language with a high-performance solver

= |t is geared towards solving NP-hard combinatorial search problems

= Originally developed for Al applications dealing with Knowledge
Representation and Reasoning (KRR)

= Led to a rich modeling language, compared to SAT

= Useful for solving combinatorial problems in P, NP, and NPNP - in
areas like

= Bioinformatics

= Robotics

= Music Composition

= Decision Support Systems used by NASA
= Product Configuration
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ASP SYSTEMS

= The best ASP tools are developed by the University of Potsdam,
Germany

= Download their ASP solver clingo from

http://potassco.sourceforge.net/index.html
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http://potassco.sourceforge.net/index.html

TWO PARADIGMS

= Theorem-Proving-Based Approach (Prolog)
= Solution given by the derivation of a query
= Model-Generation-Based Approach (ASP)

= Solution given by a model of the representation
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COMPARISON TO PROLOG

Is Prolog Declarative?

= Not really.. shuffling rules in a program can break it
= Prolog program:

edge(1,2).
edge(2,3).

reachable(X,Y) :- edge(X,Y).
reachable(X,Y) :- edge(X,Z), reachable(Z,Y).

= A query:

?- reachable(1,3).
true.
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COMPARISON TO PROLOG (CONTD.)

= If we shuffle the program as follows:

edge(1,2).
edge(2,3).

reachable(X,Y) :- reachable(Z,Y), edge(X,Z).
reachable(X,Y) :- edge(X,Y).

= Then we get:

?- reachable(1,3).

Fatal Error: local stack overflow.

= This is not a bug in Prolog; it is intrinstic in the fixed execution of
its inference algorithm
= Prolog provides constructs to alter program execution
= The cut operator allows you to prune the search space, at the risk of

losing solutions
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COMPARISON TO PROLOG (CONTD.)

= Prolog is a programming language; it allows the user to exercise
control

= For a programming language, control is good
= ASP provides a representation language

= Completely decouples problem specification from problem solving

Prolog ASP
Query Derivation Model Generation
Top-down Bottom-up

Fixed execution order No fixed execution order
Programming Language Modeling Language
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ASP SYNTAX AND SEMANTICS
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LOGIC PROGRAMS

A logic program over a set of atoms A is a set of rules of the form:

a0 < a1,---5,dmy ™~ Amyl, .-, aAn

where each a; € A.
= Rules are a way of expressing constraints on a set of atoms

= "~ represents default negation

= An atom is assumed to be false until it is proven to be true

= Let X be the set of atoms representing a solution

= This rule says: "If a,...,a, are all in X, and none of ani1,...,an
are in X, then ag should be in X"
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STABLE MODELS / ANSWER SETS

©=qA(gA-r— p)

= ¢ has three classical models: {p, q}, {q,r}, and {p, q, r}
= {p, q} represents the model where:

p—1l,g—1r—0

= The logic program representation of ¢ is P,:

g
p<qg,~r

= This logic program has one stable model (a.k.a answer set): {p, q}

= A set X of atoms is a stable model of a logic program P if Xis a
(classical) model of P and all atoms in X are justified by some rule
in P
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MODELING PROBLEMS IN ASP
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ASP SOLVING STEPS

= Model your problem as a logic program

= The ASP solver only deals with propositional logic programs

= But it's more convenient (and much more flexible) to write
first-order programs with variables

= Thus, the ASP solving process consists of two steps:

1. A grounder converts a first-order program into a propositional
program, by systematically replacing variables with concrete values
from some domain

2. A solver takes the ground program and assigns truth values to atoms
to obtain the stable models of the program
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ASP SOLVING STEPS

Modeling

Logic Program }—

Grounding Solving

Interpreting

Output
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ASP MODELING LANGUAGE

= Facts

= a.
= person(bill).

= person(alice;bob; james).
= Is shorthand for person(alice). person(bob). person(james).

= num(1..10).

= Is shorthand for num(1) . num(2). num(3). num(4). etc.

= Rules

= a :- b.
= reachable(X,Z) :- edge(X,Y), reachable(Y,Z).
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GROUNDING EXAMPLE

= |f we have a logic program
r(a,b).
r(b,c).
t(X,Y) :- r(X,Y).
= Then the full ground instantiation is:

r(a,b).
r(b,c).
t(a,a) :- r(a,a).
t(b,a) :- r(b,a).
t(c,a) :- r(c,a).

= Which is trivially reduced to:
r(a,b).
r(b,c).
t(a,b) :- r(a,b).

t(b,c) :- r(b,c).
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ASP SOLVING METHODOLOGY

= General methodology: generate and test (or “guess and check")

1. Generate candidate solutions through non-deterministic constructs
(like choice rules)
2. Test them to eliminate invalid candidate solutions
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ASP MODELING CONSTRUCTS

= Choice Rules

= 1 { has_property(X,C) : property(C) } 1 :- item(X).

Integrity Constraints

= :- in_clique(2), in_clique(3), not edge(2,3).
= "It cannot be the case that nodes 2 and 3 are in a clique, and there
is no edge betweeen 2 and 3"

= Aggregates
» within_budget :- 10 #sum { Amount : paid(Amount) } 100.

= Optimization Statements

= #maximize { 1,X:in_clique(X),node(X) }.
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N-QUEENS PROBLEM

= Goal: Place n queens on an n x n chess board such that no queens
attack each other

4 W
3 -3 ‘g’
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N-QUEENS - DEFINING THE BOARD

= Define the board:

row(l..n).
col(l..n).

$ clingo queens.lp --const n=4
Answer: 1

row(1l) row(2) row(3) row(4) \
col(1) col(2) col(3) col(4)
SATISFIABLE
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N-QUEENS - PLACING QUEENS

= Generate: Place any number of queens on the board:
{ queen(I,J) : row(I), col(J) }.

$ clingo queens.lp --const n=4 3
Answer: 1

row(1) row(2) row(3) row(4) \

col(1) col(2) col(3) col(4)

Answer: 2

row(1) row(2) row(3) row(4) \

col(1) col(2) col(3) col(4) queen(2,1)
Answer: 3

row(1) row(2) row(3) row(4) \

col(1) col(2) col(3) col(4) queen(3,1)
SATISFIABLE
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N-QUEENS - PLACING QUEENS
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N-QUEENS - RESTRICTING THE NUMBER OF QUEENS

= We need to say that there should only be n queens
= Expressed by an integrity constraint using double negation

= "It should not be the case that there are not n queens.”

:- not n { queen(I,J) } n.

$ clingo queens.lp --const n=4

Solving. ..

Answer: 1

queen(1,1) queen(2,1) queen(3,1) queen(4,1)

30



N-QUEENS - RESTRICTING THE NUMBER OF QUEENS

= The last solution looks like this:

EE i
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N-QUEENS - FORBIDDING ATTACKS

= Prevent attacks by adding integrity constraints

= Forbid horizontal attacks (two queens in the same row):
:- queen(I,J1), queen(I,J2), J1 != J2.

= Forbid vertical attacks (two queens in the same column):
:- queen(Il,J), queen(I2,J), Il != I2.

= And forbid diagonal attacks:

:- queen(I,J), queen(II,JJ), (I,J) !'= (II,JJ), I+J == II+JJ.
:- queen(I,J), queen(II,JJ), (I,J) !'= (II,JJ), I-J == II-JJ.
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N-QUEENS - FULL PROGRAM

queens.lp

row(l..n).
col(l..n).

/ Generate
n { queen(I,J) : row(I), col(J) } n.

7 Test

:- queen(I,J1), queen(I,J2), J1 != J2.

:- queen(Il1,J), queen(I2,J), I1 != I2.

:- queen(I,J), queen(II,JJ), (I,J) !'= (II,JJ), I+J == II+JJ.
:- queen(I,J), queen(II,JJ), (I,J) != (II1,JJ), I-J == II-JJ.

#show queen/2.
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N-QUEENS - SOLUTION

$ clingo queens.lp --const n=4

Solving. ..

Answer: 1

queen(3,1) queen(1,2) queen(4,3) queen(2,4)

: -
g\ -1
2 -4
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ELABORATION TOLERANCE

= ASP is very tolerant to elaboration in the problem specification
= Start with a large search space, and keep adding constraints to
whittle down results

= Helps you to understand your problem, and is useful for prototyping

35



GRAPH 3-COLOURING PROBLEM

= Problem instance: A graph G= (V,E).
= Goal: Assign one colour to each node, such that no two nodes
connected by an edge have the same colour.
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GRAPH 3-COLOURING - INSTANCE

= Represent the graph using node/1 and edge/2 predicates:

node(1..6).

edge(1,2). edge(1,3). edge(1,5).

edge(2,3). edge(2,4). edge(2,6).

edge(3,4). edge(3,5). edge(4,5). edge(5,6).

col(red;green;blue).
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FOR REFERENCE: ASP MODELING CONSTRUCTS

= Choice Rules

= 1 { has_property(X,C) : property(C) } 1 :- item(X).

Integrity Constraints

= :- in_clique(2), in_clique(3), not edge(2,3).
= "It cannot be the case that nodes 2 and 3 are in a clique, and there
is no edge betweeen 2 and 3"

= Aggregates
= within_budget :- 10 #sum { Amount : paid(Amount) } 100.

= Optimization Statements

= #maximize { 1,X:in_clique(X),node(X) }.
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GRAPH 3-COLOURING - ENCODING

= Generate: Assign one colour to each node using a choice rule
1 { node_col(X,C) : col(C) } 1 :- node(X).

= Test: Eliminate candidate solutions where two nodes connected by
an edge get the same colour, using an integrity constraint

:- edge(X,Y), node_col(X,C), node_col(Y,C).

39



GRAPH 3-COLOURING - FULL PROGRAM

col.lp

node(1..6).

edge(1,2). edge(1,3). edge(1,5).
edge(2,3). edge(2,4). edge(2,6).
edge(3,4). edge(3,5).

edge(4,5).

edge(5,6).

col(red;green;blue).
1 { node_col(X,C) : col(C) } 1 :- node(X).
:- edge(X,Y), node_col(X,C), node_col(Y,C).

#show node_col/2.
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GRAPH 3-COLOURING - RUNNING

$ clingo col.lp

Answer: 1

node_col(2,green) node_col(1l,blue) node_col(3,red) \
node_col(5,green) node_col(4,blue) node_col(6,red)

SATISFIABLE

Models : 1+

Calls 3 d

Time : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s
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GRAPH 3-COLOURING - INTERPRETING
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GRAPH 3-COLOURING - ALL ANSWER SETS

= We also can enumerate all possible solutions:

$ clingo col_encoding.lp col_instance.lp O

Answer: 1

node_col(2,green) node_col(l,blue) node_col(3,red) \
node_col(5,green) node_col(4,blue) node_col(6,red)
Answer: 2

node_col(2,green) node_col(1l,blue) node_col(3,red) \
node_col(5,green) node_col(4,blue) node_col(6,blue)
Answer: 3

node_col(1l,red) node_col(2,green) node_col(3,blue) \
node_col(5,green) node_col(4,red) node_col(6,red)
Answer: 4

node_col(1l,red) node_col(2,green) node_col(3,blue) \
node_col(5,green) node_col(4,red) node_col(6,blue)
Answer: 5

node_col(1l,red) node col(2 blue) node_col(3,green) \ 43
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XKCD KNAPSACK PROBLEM STATEMENT

MY HOBBY:

EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

¢ CHOTCHWKIES RESTAURANT

<« APPENZERS
MIXED FRUIT 2.15
FRENCH FRIES 275
SIDE SALAD 335
HOT WINGS 3.55
MozzAREUA STIKS 420
SAMPLER PLATE 5.80

—— SANDWICHES ~—

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE..
| . EXACTLY? UM
HERE, THESE PAPERS ON THE KNAPSACK.
PROBLEM MIGHT HELP YOU QUT.

LISTEN, I HAVE Six OTHER
TABLES TO GET T0 —

—AS FAST P POSSIBLE, OF (CURSE. WANT
SOMETHING ON TRAVELING SALESNAN? /
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XKCD KNAPSACK PROBLEM PART 1

MY HOBBY:
EMBEDDING NP-QOMPLETE PROBLEMS IN RESTRURANT ORDERS

— APPENZERS —~
MED FROIT 215
FRENCH FRIES 275
SiDE SALAD 235
HOT WINGs 3.5
MozzaREUp STICKS  4-20
SAMPLER PLATE 5.80
—— SANDWICHES ~—

WED LIKE EXACTLY §15.05
WORTH OF APPETIZERS, PLEASE.
| . EXRCTLY? UHH...
HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.
LISTEN, I HAVE §IX OTHER
TABLES T0 GET T0 —

= AG FAST A5 POSSIELE, OF COURSE. WANT
SOMETHING OM TRAVELING SALESHAN? /

\
(208

= Order some amount (possibly 0) of each food

Such that the sum of the costs of the foods times the number

ordered is exactly some desired

amount
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XKCD KNAPSACK PROBLEM PART 2

= We can encode the foods and costs as follows:

food(fruit;fries;salad;wings;mozz_sticks;sampler).

cost(fruit,215).
cost(fries,275).
cost(salad,335).
cost(wings,355).
cost (mozz_sticks,420).

cost(sampler,580).
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XKCD KNAPSACK PROBLEM PART 3

#const total = 1505.

#const max_order = 10.
food(fruit;fries;salad;wings;mozz_sticks;sampler) .

cost(fruit,215). cost(fries,275). cost(salad,335).
cost(wings,355). cost(mozz_sticks,420). cost(sampler,5380).

% Have to set an upper bound on the orders for a specific food

num (0. .max_order) .

/4 Order some amount (possibly 0) of each type of food
1 { order(Food, Number) : num(Number) } 1 :- food(Food).

/4 We want the prices to sum to the destired total

#sum{ (Cost*N) ,F : order(F,N) : cost(F,Cost), num(N)} == total.
47



XKCD KNAPSACK PROBLEM PART 4

= clingo --const total=1505 xkcd.lp
order (fruit,7) order(fries,0) order(salad,0)
order(wings,0) order(mozz_sticks,0) order (sampler,0)

= clingo --const total=19000 xkcd.lp O
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EFFICIENCY

Is ASP Declarative?

= In many ways, yes:

= You provide a specification of the problem, and a problem instance,
and you get a result

= The order of rules doesn't matter

= You don't have to think about how your problem is solved
(algorithm, data structures), just what your problem is

= However...

= Different problem encodings can yield different solving times
= Efficiency still depends on how you specify your problem
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= Performance generally depends on the size of the ground
instantiation

= This is what the solver has to look at

= Intelligent grounding techniques attempt to automatically reduce
the size of the ground program by eliminating unnecessary rules
= But still, you can never recover from a bad encoding
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PERFORMANCE OF N-QUEENS

= The previous encoding of n-Queens becomes slow at n = 15
= The encoding below is much better (gets to n = 250 in the same

amount of time):

1 { queen(I,1..n) } 1 :- I =1..n.
1 { queen(l..n,J) } 1 :- J = 1..n.
:= 2 { queen(D-J,J) }, D = 2..2*n.
:- 2 { queen(D+J,J) }, D = 1-n..n-1.

= A version of this encoding was used to go to n = 5000

= Solving took about 1 hour
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