
an introduction to answer set programming

Paul Vicol
October 14, 2015
(Based on slides by Torsten Schaub)

1



outline

0. My Research
1. Declarative Problem Solving
2. ASP Syntax and Semantics
3. Modeling Problems in ASP

2



my research

3



multi-agent belief change

• We have a network of agents
• Each agent has some initial beliefs about the state of the world
• Agents communicate and share information
• Goal: Determine what each agent believes after learning as much as

possible from other agents
• My research deals with ways to do this

4



declarative problem solving

5



traditional imperative programming

• Convert a problem specification into imperative code that solves
instances of the problem

• Deal with algorithms and data structures
• The focus is on how to solve the problem

6



traditional imperative programming

• Convert a problem specification into imperative code that solves
instances of the problem

• Deal with algorithms and data structures
• The focus is on how to solve the problem

7



declarative problem solving

• Directly encode the problem specification using a modeling language
• How do we solve the problem? vs What is the problem?
• Focus on how to describe the problem

8



declarative problem solving

• Write your problem in a formal representation (i.e. using logic)
• The representation defines an implicit search space, and gives a

description of a solution
• An off-the-shelf solver takes the representation and finds its logical

models
• The problem representation should be such that these models

represent solutions

9



what is answer set programming?

• ASP is a declarative problem-solving paradigm that combines an
expressive modeling language with a high-performance solver

• It is geared towards solving NP-hard combinatorial search problems
• Originally developed for AI applications dealing with Knowledge

Representation and Reasoning (KRR)
• Led to a rich modeling language, compared to SAT

• Useful for solving combinatorial problems in P, NP, and NPNP, in
areas like

• Bioinformatics
• Robotics
• Music Composition
• Decision Support Systems used by NASA
• Product Configuration

10



asp systems

• The best ASP tools are developed by the University of Potsdam,
Germany

• Download their ASP solver clingo from
http://potassco.sourceforge.net/index.html

11

http://potassco.sourceforge.net/index.html


two paradigms

• Theorem-Proving-Based Approach (Prolog)
• Solution given by the derivation of a query

• Model-Generation-Based Approach (ASP)
• Solution given by a model of the representation

12



comparison to prolog

Is Prolog Declarative?

• Not really… shuffling rules in a program can break it
• Prolog program:

edge(1,2).
edge(2,3).

reachable(X,Y) :- edge(X,Y).
reachable(X,Y) :- edge(X,Z), reachable(Z,Y).

• A query:

?- reachable(1,3).
true.

13



comparison to prolog (contd.)

• If we shuffle the program as follows:

edge(1,2).
edge(2,3).

reachable(X,Y) :- reachable(Z,Y), edge(X,Z).
reachable(X,Y) :- edge(X,Y).

• Then we get:

?- reachable(1,3).
Fatal Error: local stack overflow.

• This is not a bug in Prolog; it is intrinstic in the fixed execution of
its inference algorithm

• Prolog provides constructs to alter program execution
• The cut operator allows you to prune the search space, at the risk of

losing solutions 14



comparison to prolog (contd.)

• Prolog is a programming language; it allows the user to exercise
control

• For a programming language, control is good

• ASP provides a representation language
• Completely decouples problem specification from problem solving

Prolog ASP

Query Derivation Model Generation
Top-down Bottom-up

Fixed execution order No fixed execution order
Programming Language Modeling Language

15



asp syntax and semantics

16



logic programs

• A logic program over a set of atoms A is a set of rules of the form:

a0 ← a1, . . . , am,∼ am+1, . . . ,∼ an

where each ai ∈ A.
• Rules are a way of expressing constraints on a set of atoms
• “∼” represents default negation

• An atom is assumed to be false until it is proven to be true

• Let X be the set of atoms representing a solution
• This rule says: “If a1, . . . , am are all in X, and none of am+1, . . . , an

are in X, then a0 should be in X”

17



stable models / answer sets

φ = q ∧ (q ∧ ¬r→ p)

• φ has three classical models: {p, q}, {q, r}, and {p, q, r}
• {p, q} represents the model where:

p 7→ 1, q 7→ 1, r 7→ 0

• The logic program representation of φ is Pφ:

q←

p← q,∼ r

• This logic program has one stable model (a.k.a answer set): {p, q}
• A set X of atoms is a stable model of a logic program P if X is a

(classical) model of P and all atoms in X are justified by some rule
in P

18



modeling problems in asp

19



asp solving steps

• Model your problem as a logic program
• The ASP solver only deals with propositional logic programs
• But it’s more convenient (and much more flexible) to write

first-order programs with variables
• Thus, the ASP solving process consists of two steps:

1. A grounder converts a first-order program into a propositional
program, by systematically replacing variables with concrete values
from some domain

2. A solver takes the ground program and assigns truth values to atoms
to obtain the stable models of the program

20



asp solving steps

21



asp modeling language

• Facts
• a.
• person(bill).
• person(alice;bob;james).

• Is shorthand for person(alice). person(bob). person(james).

• num(1..10).
• Is shorthand for num(1). num(2). num(3). num(4). etc.

• Rules
• a :- b.
• reachable(X,Z) :- edge(X,Y), reachable(Y,Z).

22



grounding example

• If we have a logic program
r(a,b).
r(b,c).
t(X,Y) :- r(X,Y).

• Then the full ground instantiation is:
r(a,b).
r(b,c).
t(a,a) :- r(a,a).
t(b,a) :- r(b,a).
t(c,a) :- r(c,a).
...

• Which is trivially reduced to:
r(a,b).
r(b,c).
t(a,b) :- r(a,b).
t(b,c) :- r(b,c).

23



asp solving methodology

• General methodology: generate and test (or “guess and check”)

1. Generate candidate solutions through non-deterministic constructs
(like choice rules)

2. Test them to eliminate invalid candidate solutions

24



asp modeling constructs

• Choice Rules
• 1 { has_property(X,C) : property(C) } 1 :- item(X).

• Integrity Constraints
• :- in_clique(2), in_clique(3), not edge(2,3).
• “It cannot be the case that nodes 2 and 3 are in a clique, and there

is no edge betweeen 2 and 3.”

• Aggregates
• within_budget :- 10 #sum { Amount : paid(Amount) } 100.

• Optimization Statements
• #maximize { 1,X:in_clique(X),node(X) }.

25



n-queens problem

• Goal: Place n queens on an n× n chess board such that no queens
attack each other

26



n-queens - defining the board

• Define the board:
row(1..n).
col(1..n).

$ clingo queens.lp --const n=4
Answer: 1
row(1) row(2) row(3) row(4) \
col(1) col(2) col(3) col(4)
SATISFIABLE

27



n-queens - placing queens

• Generate: Place any number of queens on the board:
{ queen(I,J) : row(I), col(J) }.

$ clingo queens.lp --const n=4 3
Answer: 1
row(1) row(2) row(3) row(4) \
col(1) col(2) col(3) col(4)
Answer: 2
row(1) row(2) row(3) row(4) \
col(1) col(2) col(3) col(4) queen(2,1)
Answer: 3
row(1) row(2) row(3) row(4) \
col(1) col(2) col(3) col(4) queen(3,1)
SATISFIABLE

28



n-queens - placing queens

29



n-queens - restricting the number of queens

• We need to say that there should only be n queens
• Expressed by an integrity constraint using double negation

• “It should not be the case that there are not n queens.”

:- not n { queen(I,J) } n.

$ clingo queens.lp --const n=4
Solving...
Answer: 1
queen(1,1) queen(2,1) queen(3,1) queen(4,1)

30



n-queens - restricting the number of queens

• The last solution looks like this:

31



n-queens - forbidding attacks

• Prevent attacks by adding integrity constraints
• Forbid horizontal attacks (two queens in the same row):

:- queen(I,J1), queen(I,J2), J1 != J2.

• Forbid vertical attacks (two queens in the same column):
:- queen(I1,J), queen(I2,J), I1 != I2.

• And forbid diagonal attacks:

:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I+J == II+JJ.
:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I-J == II-JJ.

32



n-queens - full program

queens.lp

row(1..n).
col(1..n).

% Generate
n { queen(I,J) : row(I), col(J) } n.

% Test
:- queen(I,J1), queen(I,J2), J1 != J2.
:- queen(I1,J), queen(I2,J), I1 != I2.
:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I+J == II+JJ.
:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I-J == II-JJ.

#show queen/2.

33



n-queens - solution

$ clingo queens.lp --const n=4
Solving...
Answer: 1
queen(3,1) queen(1,2) queen(4,3) queen(2,4)

34



elaboration tolerance

• ASP is very tolerant to elaboration in the problem specification
• Start with a large search space, and keep adding constraints to

whittle down results
• Helps you to understand your problem, and is useful for prototyping

35



graph 3-colouring problem

• Problem instance: A graph G = ⟨V, E⟩.
• Goal: Assign one colour to each node, such that no two nodes

connected by an edge have the same colour.

36



graph 3-colouring - instance

• Represent the graph using node/1 and edge/2 predicates:

node(1..6).
edge(1,2). edge(1,3). edge(1,5).
edge(2,3). edge(2,4). edge(2,6).
edge(3,4). edge(3,5). edge(4,5). edge(5,6).

col(red;green;blue).
37



for reference: asp modeling constructs

• Choice Rules
• 1 { has_property(X,C) : property(C) } 1 :- item(X).

• Integrity Constraints
• :- in_clique(2), in_clique(3), not edge(2,3).
• “It cannot be the case that nodes 2 and 3 are in a clique, and there

is no edge betweeen 2 and 3.”

• Aggregates
• within_budget :- 10 #sum { Amount : paid(Amount) } 100.

• Optimization Statements
• #maximize { 1,X:in_clique(X),node(X) }.

38



graph 3-colouring - encoding

• Generate: Assign one colour to each node using a choice rule

1 { node_col(X,C) : col(C) } 1 :- node(X).

• Test: Eliminate candidate solutions where two nodes connected by
an edge get the same colour, using an integrity constraint

:- edge(X,Y), node_col(X,C), node_col(Y,C).

39



graph 3-colouring - full program

col.lp

node(1..6).
edge(1,2). edge(1,3). edge(1,5).
edge(2,3). edge(2,4). edge(2,6).
edge(3,4). edge(3,5).
edge(4,5).
edge(5,6).

col(red;green;blue).
1 { node_col(X,C) : col(C) } 1 :- node(X).
:- edge(X,Y), node_col(X,C), node_col(Y,C).

#show node_col/2.

40



graph 3-colouring - running

$ clingo col.lp
Answer: 1
node_col(2,green) node_col(1,blue) node_col(3,red) \
node_col(5,green) node_col(4,blue) node_col(6,red)
SATISFIABLE

Models : 1+
Calls : 1
Time : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

41



graph 3-colouring - interpreting

42



graph 3-colouring - all answer sets

• We also can enumerate all possible solutions:

$ clingo col_encoding.lp col_instance.lp 0
Answer: 1
node_col(2,green) node_col(1,blue) node_col(3,red) \
node_col(5,green) node_col(4,blue) node_col(6,red)
Answer: 2
node_col(2,green) node_col(1,blue) node_col(3,red) \
node_col(5,green) node_col(4,blue) node_col(6,blue)
Answer: 3
node_col(1,red) node_col(2,green) node_col(3,blue) \
node_col(5,green) node_col(4,red) node_col(6,red)
Answer: 4
node_col(1,red) node_col(2,green) node_col(3,blue) \
node_col(5,green) node_col(4,red) node_col(6,blue)
Answer: 5
node_col(1,red) node_col(2,blue) node_col(3,green) \
node_col(5,blue) node_col(4,red) node_col(6,red)
Answer: 6
node_col(1,red) node_col(2,blue) node_col(3,green) \
node_col(5,blue) node_col(4,red) node_col(6,green)
Answer: 7
node_col(1,green) node_col(2,blue) node_col(3,red) \
node_col(5,blue) node_col(4,green) node_col(6,green)
Answer: 8
node_col(1,green) node_col(2,blue) node_col(3,red) \
node_col(5,blue) node_col(4,green) node_col(6,red)
Answer: 9
node_col(2,red) node_col(1,blue) node_col(3,green) \
node_col(5,red) node_col(4,blue) node_col(6,green)
Answer: 10
node_col(2,red) node_col(1,blue) node_col(3,green) \
node_col(5,red) node_col(4,blue) node_col(6,blue)
Answer: 11
node_col(2,red) node_col(1,green) node_col(3,blue) \
node_col(5,red) node_col(4,green) node_col(6,blue)
Answer: 12
node_col(2,red) node_col(1,green) node_col(3,blue) \
node_col(5,red) node_col(4,green) node_col(6,green)
SATISFIABLE

43



xkcd knapsack problem statement

44



xkcd knapsack problem part 1

• Order some amount (possibly 0) of each food
• Such that the sum of the costs of the foods times the number

ordered is exactly some desired amount

45



xkcd knapsack problem part 2

• We can encode the foods and costs as follows:

food(fruit;fries;salad;wings;mozz_sticks;sampler).

cost(fruit,215).
cost(fries,275).
cost(salad,335).
cost(wings,355).
cost(mozz_sticks,420).
cost(sampler,580).

46



xkcd knapsack problem part 3

#const total = 1505.
#const max_order = 10.

food(fruit;fries;salad;wings;mozz_sticks;sampler).

cost(fruit,215). cost(fries,275). cost(salad,335).
cost(wings,355). cost(mozz_sticks,420). cost(sampler,580).

% Have to set an upper bound on the orders for a specific food
num(0..max_order).

% Order some amount (possibly 0) of each type of food
1 { order(Food, Number) : num(Number) } 1 :- food(Food).

% We want the prices to sum to the desired total
#sum{(Cost*N),F : order(F,N) : cost(F,Cost), num(N)} == total.

#show order/2.
47



xkcd knapsack problem part 4

• clingo --const total=1505 xkcd.lp
order(fruit,7) order(fries,0) order(salad,0)
order(wings,0) order(mozz_sticks,0) order(sampler,0)

• clingo --const total=19000 xkcd.lp 0

48



efficiency

Is ASP Declarative?

• In many ways, yes:
• You provide a specification of the problem, and a problem instance,

and you get a result
• The order of rules doesn’t matter
• You don’t have to think about how your problem is solved

(algorithm, data structures), just what your problem is

• However…
• Different problem encodings can yield different solving times
• Efficiency still depends on how you specify your problem

49



efficiency (contd.)

• Performance generally depends on the size of the ground
instantiation

• This is what the solver has to look at

• Intelligent grounding techniques attempt to automatically reduce
the size of the ground program by eliminating unnecessary rules

• But still, you can never recover from a bad encoding

50



performance of n-queens

• The previous encoding of n-Queens becomes slow at n ≈ 15
• The encoding below is much better (gets to n ≈ 250 in the same

amount of time):

1 { queen(I,1..n) } 1 :- I = 1..n.
1 { queen(1..n,J) } 1 :- J = 1..n.
:- 2 { queen(D-J,J) }, D = 2..2*n.
:- 2 { queen(D+J,J) }, D = 1-n..n-1.

• A version of this encoding was used to go to n = 5000
• Solving took about 1 hour�

51


	My Research
	Declarative Problem Solving
	ASP Syntax and Semantics
	Modeling Problems in ASP

