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Introduction - Disentanglement
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● A disentangled representation is one in which different factors of variation are 
represented by different components of the representation
○ e.g., different dimensions in the latent space

● Disentangled representations are useful for:
○ Improving fairness and interpretability
○ Improved robustness to OOD data (in domain adaptation & generalization)
○ Controllable generative modeling



Correlations Between Attributes

● Most work assumes that the ground-truth factors of variation are independent
○ That is, that there are no correlations between attributes
○ This holds for simple/synthetic benchmark tasks (e.g., dSprites, Shapes3D)

● But real data often has correlations between attributes, breaking this assumption
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● Correlations also occur in fairness & healthcare: demographics differ between hospitals



Introduction - Disentanglement of Correlated Attributes

● Disentanglement of correlated attributes is problematic (Träuble et al., 2020)
○ For correlated attributes, the corresponding latent codes encode a mixture of 

these attributes.

○ Träuble et al. suggest to address this with weak supervision.
○ We show that even under full supervision, enforcing independence between 

latent subspaces can fail.

Figure from Träuble et al., 2020



● Goal: Find a mapping to a latent space                                                 such that we can 
recover the ground-truth attributes via linear functions

Problem Setup

● We have noisy data                where                                         are the underlying factors 
of variation, which may be correlated

● Goal: Learn a model robust to correlation shifts
○ If we train on data where                         , then we want the resulting model to 

perform well on uncorrelated data                          , or anticorrelated data,
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Problem Setup
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● Linear generative model with correlated Gaussian source signals

Gaussian Source Signals Gaussian Noise VariablesGround-Truth Mixing Matrix

● Goal: Recover a mapping that inverts the data-generating process,
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● Linear generative model with correlated Gaussian source signals

● The optimal linear regression solution is given by:

where and

because it is biased by the correlation structure        and 
towards directions of maximal signal to noise ratio

Supervised Learning Does Not Yield Disentanglement



Supervised Learning Does Not Yield Disentanglement

Performance drops when the correlation between       and       shifts at test time

● Problem: Linear regression is sensitive to noise

The estimator     tries to make use of the assumed correlation between       and       to counteract 
the information lost due to noise, but this correlation is no longer present in the test data.

● There is no constraint preventing the model from encoding both       and       into each of        and 

Correlated



● Issue: Because       and       are correlated,
○ By enforcing                      , at least one of the subspaces cannot contain all relevant 

information about its attribute
○ This leads to poor performance on the in-distribution (correlated) training data

● Linear generative model with Gaussian source signals:

Unconditional Independence Constraint Does Not Help

● Common approach: Enforce independence by minimizing the MI between latent subspaces
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Minimize the 
mutual information



Conditional Independence is the Correct Objective

● Assuming a common cause for the correlation between     and     , there is 
a connection in the graphical model between     and     introducing the 
statistical dependence.
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Conditional Independence is the Correct Objective

● We minimize the MI between latent subspaces conditioned on the attributes: 

and

● We desire that       and       share as little information as possible 
(given the ground truth correlation)

● Observing either      or       disconnects      and     

● Assuming a common cause for the correlation between     and     , there is 
a connection in the graphical model between     and     introducing the 
statistical dependence.



Training Set Correlation and Noise Level

Training, Correlated Test, Correlation-Shifted Reference

Linear regression: 

Train correlation Noise level
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Multi-Attribute Classification Results
● Synthetic classification task with multiple attributes. Observed data                       is generated from 

noise                         and correlated source attributes 

Training, Correlated Test, Correlation-Shifted Reference



● For most tasks, there is no closed form for MI/CMI

Adversarial Disentanglement
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We align these distributions adversarially



● For most tasks, there is no closed form for MI/CMI

Adversarial Disentanglement

● We use an adversarial approach to minimize CMI, based on batchwise shuffling of latent subspaces

if

We align these distributions adversarially



● We used attributes Male and Smiling that we know a priori are not causally related.
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● We used attributes Female/Male and Smiling/Not Smiling that we know a priori are not causally related.
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Has a larger effect for stronger correlations, but does not harm 
performance for low correlation strengths.

Correlated CelebA

Base: Performs well on correlated validation data
Performance drops on correlation-shifted test data

Base + MI: Fails to model the in-distribution, correlated validation data

Base + CMI: Achieves the most consistent performance across correlated and 
correlation-shifted datasets

✖

✖

✔

✔



Correlated CelebA

● Even without constructing correlated datasets from CelebA by subsampling, we can see 
detrimental effects due to correlations if we evaluate performance on subpopulations of 
correlated (in-distribution) data.

● Some combinations of attributes are more common than others, and models that exploit 
these correlations for prediction may treat rare combinations unfairly

○ Base fails on rare attribute combinations
○ Base + MI does not succeed even on the common attribute combinations
○ Base + CMI improves accuracy on rare attribute combinations



● Learning robust disentangled representations can be challenging in the presence of correlations, 
even with full supervision

● We introduced and motivated subspace independence conditioned on available attributes as the 
correct objective for disentanglement in correlated settings.

● We described an algorithm to achieve conditional independence for general classification tasks.

● We showed that CMI minimization improves robustness to correlation shifts on both synthetic tasks 
and real-world datasets.

Summary



Thank you!


