Understanding and Mitigating Exploding Inverses in
Invertible Neural Networks

Jens Behrmann*, Paul Vicol*, Kuan-Chieh Wang*, Roger Grosse, Jorn Jacobsen

Slides by: Paul Vicol

Universitat
Bremen

@@ UNIVERSITY OF ? VECTOR
¥ TORONTO INSTITUTE

Motivation
Lipschitz Properties of INN Building Blocks
Controlling Global Stability
Controlling Local Stability
o Bi-directional finite differences regularization
o Normalizing Flow Regularization
Experiments
o Instability on OOD Data
o Non-invertibility within the dequantization region
o Memory-efficient gradient computation
Summary and Practical Takeaways

e Motivation

Applications of INNs

e The application space for invertible neural networks (INNs) is growing rapidly
e Training generative models with exact likelihoods --- normalizing flows
e Computing memory-saving gradients
e Increasing posterior flexibility in VAEs

e Solving inverse problems

e Analyzing adversarial robustness

e However, as practitioners apply off-the-shelf INNs to new problems w/ new objectives,
they often run into stability issues that break the models
o Even worse, many of these failures are not immediately apparent during training

Applications of INNs

e The application space for invertible neural networks (INNs) is growing rapidly
our {o Training generative models with exact likelihoods --- normalizing flows
Focus | 4 Computing memory-saving gradients

e Increasing posterior flexibility in VAEs

e Solving inverse problems

e Analyzing adversarial robustness

e However, as practitioners apply off-the-shelf INNs to new problems w/ new objectives,
they often run into stability issues that break the models
o Even worse, many of these failures are not immediately apparent during training

Memory-Efficient Gradient Computation

Neural Net

> > > > » “Assassin kitten”

\\ J
Y

Store activations in GPU memory

e Typically, we store the infermediate activations of a neural net in memory to
compute gradients in the backward pass
e Activation memory is often a limiting factor when using:
1. Large images (e.g., medical images)
2. Large minibatches
3. Deep models

Memory-Efficient Gradient Computation

Invertible Neural Net

> > > > » “Assassin kitten”
\ g

\\ J
Y

Recompute activations in the backward pass

e With an INN, you don’t need to store intermediate activations in memory
o You can reconstruct activations during the backward pass, trading off reduced memory for
increased computation

e Key assumption: the INN is numerically stable, so that the reconstructed
activations are equivalent to the ones from the forward pass

Motivation: Issues with Memory-Saving Gradients

e We can save memory by discarding activations, and recomputing them in the backward
pass, e.g., ‘memory-saving gradients”

e Measure the quality of the memory-saving gradient by computing the angle fo the true
gradient (that is computed using stored activations)

— Additive
— Affine

10> 10°

Iteration

Motivation: Issues with Memory-Saving Gradients

e We can save memory by discarding activations, and recomputing them in the backward
pass, e.g., ‘memory-saving gradients”

e Measure the quality of the memory-saving gradient by computing the angle fo the true
gradient (that is computed using stored activations)

— Additive Exploding inverses in affine models
— Affine lead to highly inaccurate gradients

0 1.6 :

O :

D12 NaN gradients

o from here on

< 0.8 —>

Lo04| ¢}

> :

< 0.0 1

10> 10°

Iteration

Motivation: Issues with Memory-Saving Gradients

e We can save memory by discarding activations, and recomputing them in the backward
pass, e.g., ‘memory-saving gradients”

e Measure the quality of the memory-saving gradient by computing the angle fo the true
gradient (that is computed using stored activations)

— Additive Exploding inverses in affine models
— Affine lead to highly inaccurate gradients
0 1.6 :
O :
D12 NaN gradients
% from here on Foreshadowing: We provide a
S 0.8 ' regularizer that stabilizes affine
D04] models and allows for training with
g’ : memory-saving gradients
< 0.0 1

10> 10°

Iteration

Motivation: Instability on OOD Data

e Pre-trained affine Glow models are not numerically invertible on OOD data!

o The exploding inverse will also impact likelihoods on OOD samples, making these models
ill-suited for likelihood-based OOD detection
e Pre-trained Residual Flows do not suffer from this issue

_ CIFAR-10 Glow ResFlow
= Dataset % Inf Err % Inf Err
=
:go CIFAR-10 0 6.3e-5 0 2.9e-2
© Uniform 100 - 0 1.7e2

Gaussian 100 - 0 7.2e-3
= Rademacher = 100 - 0 1.9e3
g SVHN 0 5.5e-5 0 7.3e-2
*é‘ Texture 37.0 7.8e-2 0 2.0e-2
3 Places 24.9 9.9e-2 0 2.9e-2
7 tinyIlmageNet 38.9 1.6e-1 0 3.5e-2

¢ v J U v J

In-Distribution Out-of-Distribution (OOD) Datasets

Tasks Have Different Stability Requirements

Different tasks have different stability requirements:

Memory-Saving Gradients Normalizing Flows

Only require the model to be e Require the model to be invertible on
invertible on the training data, to training and test data, and for many
reliably compute gradients applications on out-of-distribution data

- Local stability - Global stability

e Lipschitz Properties of INN Building Blocks

Bi-Lipschitz Continuity

Lipschitz forward v
Lipschitz inverse X

)

\
/

—
Dom(F)

)

~

—
Cod(F)

e Small change in input —
small change in output

Lipschitz forward X
Lipschitz inverse

)

<

—
T~

—
Dom(F)

)

—
Cod(F)

Small change in output —
small change in input

Lipschitz forward v
Lipschitz inverse v/

)

)

—
Dom(F)

—
Cod(F)

Bi-Lipschitz continuous
functions: changes
bounded in both directions

Bi-Lipschitz Continuity

Definition 1 (Lipschitz and bi-Lipschitz continuity). A function F : R® — R? is called Lipschitz
continuous if there exists a constant L =: Lip(F’) such that:

|F(z1) = F(x2)|l < Lllz1 — zafl, V1,22 € R% (1)
If an inverse F~1 : R — R? and a constant L* =: Lip(F ') exists such that:

I1F~ Y (yy) — F7 Y () || < L*||yr — w2, VY y1,y2 € RY, (2)

then F' is called bi-Lipschitz continuous. Furthermore, F' or F~1 is called locally Lipschitz
continuous in [a, b]%, if the above inequalities hold for 1, x5 or y1, o in the interval [a, b]°.

Bi-Lipschitz Continuity

Definition 1 (Lipschitz and bi-Lipschitz continuity). A function F : R® — R? is called Lipschitz
continuous if there exists a constant L =: Lip(F’) such that:

|F(z1) = F(x2)|l < Lllz1 — zafl, V1,22 € R% (1)
If an inverse F~1 : R — R? and a constant L* =: Lip(F ') exists such that:

I1F~ Y (yy) — F7 Y () || < L*||yr — w2, VY y1,y2 € RY, (2)

then F' is called bi-Lipschitz continuous. Furthermore, F' or F~1 is called locally Lipschitz
continuous in [a, b]%, if the above inequalities hold for 1, x5 or y1, o in the interval [a, b]°.

e Computations in deep learning are carried out in limited precision
—numerical error is always infroduced in both the forward and inverse passes

e Instability in either pass can amplify the imprecision, making an analytically-invertible
network numerically non-invertible!

Coupling-Based INNs

Additive Coupling Affine Coupling
F(x)fl Y F(x)h = I
F(x)fz — L, + t('rIl) F(x)b =z, © g(S(le)) +t(x11)

The difference between these
coupling blocks is this scaling

Theorem 1

1. Affine blocks have strictly larger bi-Lipschitz bounds than additive blocks
2. There is a global bi-Lipschitz bound for additive blocks, but only local

bounds for affine blocks.

Coupling-Based INNs

Additive Coupling Affine Coupling
F(x)fl Y F(x)h = I
F(x)fz — L, + t(xIl) F(x)b =z, © g(S(QJIl)) +t(x11)

e Affine blocks can have arbitrarily large singular values in the Jacobian of the inverse
mapping
o We call this exploding inverses
o Thus, they are more likely to be numerically non-invertible than additive blocks
e Controlling stability requires different approaches for additive vs affine blocks
o Additive blocks have global bounds
o Affine blocks are not globally bi-Lipschitz

e Controlling Global and Local Stability
o Bi-directional finite differences regularization
o Normalizing Flow Regularization

Controlling Global Stability

Additive Coupling Affine Coupling
F(x)fl Y F(x)h = I
F(x)fz — L, + t(xIl) F(x)b =z, © g(S(QJIl)) +t(x11)

Spectral Normalization

e Can control the Lipschitz constant of t, which guarantees stability
e On the other hand, spectral normalization does not provide guarantees for affine
blocks, as they are not globally bi-Lipschitz due to the dependence on the range of the
inputs x
o Inputs to the first layer are usually bounded by the nature of the data
o But obtaining bounds for the intermediate activations is less straightforward

Controlling Global Stability

Additive Coupling Affine Coupling
F(x)fl Y F(x)h = I
F(x)fz — L, + t(mIl) F(x)b =z, © g(S(QJIl)) +t(x11)

Modified Affine Scaling

e A natural way to increase stability of affine blocks is to consider different elementwise
scaling g
e Avoiding scaling by small values strongly influences the inverse Lipschitz bound
e One option: adapt the sigmoid scaling to output values in a restricted range such as
(0.5, 1) rather than (0O, 1).
o This improves stability, but does not completely erase qualitative stability issues

Bi-Directional Finite Differences Regularizer

e Penalty terms on the Jacobian can be used to enforce local stability
e If Fis Lipschitz continuous and differentiable, then we have:

Lip(F) = sup ||[Jr(z)|2 = sup sup ||Jr(z)v]2
z€RA ERY [[v]|2=1

Spectral norm of the Jacobian

The largest singular value

e \We introduce a second approximation using finite differences:

1
sup sup |[|Jp(z)v]l2 ~ sup sup —||F(z) — F(z + ev)|2.
z€R? |[v]|2=1 z€R? [[v]l=1 €

Finite Differences Regularization

Influence of Normalizing Flow Loss on Stability

e The training objective itself can impact local stability
e Consider the commonly-used normalizing flow objective:

log pa () = log pz (Fa(w)) + log | det Jr, ()

e The log-determinant can be expressed as:

d
log |det Jg,| = Zlog o;(x)
i=1

Minimizing the NLL invoves minimizing the sum of the log singular values

e Due to the slope of the log function, small singular values are avoided

Influence of Normalizing Flow Loss on Stability

e The training objective itself can impact local stability
e Consider the commonly-used normalizing flow objective:

log pa () = log pz (Fa(w)) + log | det Jr, ()

e Whenusing Z ~ N(0,I) as the base distribution, we minimize:

—]ngZ(Fg(.T)) X HFO(:U)Hg

This bounds the L2 norm of the outputs of F
Avoids large singular values

e Experiments
o Instability on OOD Data
o Non-invertibility within the dequantization region
o Memory-efficient gradient computation

Instability on OOD Data

Glow

Toy 2D Data N

. Glow w/ Modified Scaling Residual Flow

10°

1072

Reconstruction errors for different architectures

e Affine models can become non-invertible outside the data domain

e Using modified sigmoid scaling in (0.5, 1) helps stabilize the model, but it still
stuffers from exploding inverses in OOD regions

e Residual Flows have low reconstruction error globally

Non-Invertible Inputs within the Dequantization Distribution

e When we train NFs, we dequantize the input data = by adding uniform noise x* 4 €

Q: Is it possible to get unlucky when sampling the noise, obtaining a non-invertible * + € ?

A: Yes, using the invertibility attack we found that there are non-invertible inputs in the
dequantization distribution.

- Sampling such a dequantization may cause training to break
Original img. Perturbed img.

=
o
o

=
o
A

—_— Affine
= mod. Affine
- Resflow

?5 Recons. Error
= = =
2] 5

=
o
&

0 50 100 150 200
Attack Iteration

Reconstruction during attack

| Find Your Lack of Stability Disturbing

e No built-in mechanism to avoid unstable inverses in standard classification/regression

Unregularized

| Find Your Lack of Stability Disturbing

e No built-in mechanism to avoid unstable inverses in standard classification/regression

Unregularized Regularized

e Adding regularization via the normalizing flow loss with a small coefficient stabilizes the
inverse mapping

Memory-Saving Gradients on CIFAR-10

Model Regularizer Inv? Test Acc Recons. Err. Cond. Num. MinSV Max SV
None v 89.73 4.3e-2 7.2e+4 6.1e-2 4.4e+3
Additive Conv FD v 89.71 1.1e-3 3.0e+2 8.7e-2 2.6e+1
NF v 89.52 9.9e-4 1.7e+3 3.9e-2 6.6e+1
None X 89.07 Inf 8.6e14 1.9e-12 1.7e+3
Affine Conv FD v 89.47 9.6e-4 1.6e+2 9.6e-2 1.5e+1
NF v 89.71 1.3e-3 2.2e+3 3.5e-2 7. 7e+1
. 1.6
$ 14 —— Affine Unregularized
0 1.2 === Affine + FD
1.0 —— Affine + NF
T 08
= 0.6
D04
b el
10° 10 10° 10° 10* 10°

lteration

e Additive-coupling models are numerically stable even without reqularization

e Unreqularized affine models are unstable due to exploding inverses
o The singular value of the Jacobian of the inverse mapping is large

e Both finite-differences and normalizing flow regularizers stabilize the affine model
o Reducing the condition number of the mapping

Summary & Practical Takeaways

INNs enable generative modeling with exact likelihoods and computing memory-saving
gradients

o But the advantages of INNs rely on the assumption that the models are numerically invertible
Tasks have different stability requirements

o Memory-saving gradients only require local stability on the training data
o NFs applied to test data & OOD data should ideally be stable globally
INN architectures have different stability properties
o Residual Flows are based on stability as a fundamental design principle
o Additive and affine coupling models have different theoretical properties --- affine models have
no global Lipschitz bounds

Exploding inverses occur when the singular values of the Jacobian of the inverse
mapping can become arbitrarily large
Regularization can be used to stabilize INNs and avoid exploding inverses

Thank you!

