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Applications of INNs

● The application space for invertible neural networks (INNs) is growing rapidly

● Training generative models with exact likelihoods --- normalizing flows

● Increasing posterior flexibility in VAEs

● Computing memory-saving gradients

● Solving inverse problems

● Analyzing adversarial robustness

● However, as practitioners apply off-the-shelf INNs to new problems w/ new objectives, 
they often run into stability issues that break the models
○ Even worse, many of these failures are not immediately apparent during training
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Memory-Efficient Gradient Computation

“Assassin kitten”

Neural Net

● Typically, we store the intermediate activations of a neural net in memory to 
compute gradients in the backward pass

● Activation memory is often a limiting factor when using:
1. Large images (e.g., medical images)
2. Large minibatches
3. Deep models

Store activations in GPU memory



Memory-Efficient Gradient Computation

“Assassin kitten”

Invertible Neural Net

● With an INN, you don’t need to store intermediate activations in memory
○ You can reconstruct activations during the backward pass, trading off reduced memory for 

increased computation
● Key assumption: the INN is numerically stable, so that the reconstructed 

activations are equivalent to the ones from the forward pass

Recompute activations in the backward pass



Motivation: Issues with Memory-Saving Gradients

● The bi-Lipschitz property has been used implicitly by various works to:
○ Design generative models
○ Compute memory-saving gradients (Gomez et al., 2017 ; Donahue & Simonyan, 2019)
○ Regularize classifiers [??]
○ Solve inverse problems

● We can save memory by discarding activations, and recomputing them in the backward 
pass, e.g., “memory-saving gradients”

● Measure the quality of the memory-saving gradient by computing the angle to the true 
gradient (that is computed using stored activations)
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Motivation: Instability on OOD Data

● Pre-trained affine Glow models are not numerically invertible on OOD data!
○ The exploding inverse will also impact likelihoods on OOD samples, making these models 

ill-suited for likelihood-based OOD detection
● Pre-trained Residual Flows do not suffer from this issue

Out-of-Distribution (OOD) DatasetsIn-Distribution



Tasks Have Different Stability Requirements

● Different tasks have different stability requirements:

Memory-Saving Gradients

● Only require the model to be 
invertible on the training data, to 
reliably compute gradients

Normalizing Flows

● Require the model to be invertible on 
training and test data, and for many 
applications on out-of-distribution data

Local stability Global stability
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Bi-Lipschitz Continuity

● Small change in input → 
small change in output

● Small change in output → 
small change in input

Lipschitz forward
Lipschitz inverse

Lipschitz forward
Lipschitz inverse

Lipschitz forward
Lipschitz inverse❌

✓ ❌
✓

✓
✓

● Bi-Lipschitz continuous 
functions: changes 
bounded in both directions



Bi-Lipschitz Continuity



Bi-Lipschitz Continuity

● Computations in deep learning are carried out in limited precision
→numerical error is always introduced in both the forward and inverse passes

● Instability in either pass can amplify the imprecision, making an analytically-invertible 
network numerically non-invertible!



Coupling-Based INNs

Additive Coupling

Theorem 1

1. Affine blocks have strictly larger bi-Lipschitz bounds than additive blocks
2. There is a global bi-Lipschitz bound for additive blocks, but only local 

bounds for affine blocks.

Affine Coupling

The difference between these 
coupling blocks is this scaling



Coupling-Based INNs

● Affine blocks can have arbitrarily large singular values in the Jacobian of the inverse 
mapping
○ We call this exploding inverses
○ Thus, they are more likely to be numerically non-invertible than additive blocks

● Controlling stability requires different approaches for additive vs affine blocks
○ Additive blocks have global bounds
○ Affine blocks are not globally bi-Lipschitz

Additive Coupling Affine Coupling
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Controlling Global Stability

● Can control the Lipschitz constant of t, which guarantees stability
● On the other hand, spectral normalization does not provide guarantees for affine 

blocks, as they are not globally bi-Lipschitz due to the dependence on the range of the 
inputs x
○ Inputs to the first layer are usually bounded by the nature of the data
○ But obtaining bounds for the intermediate activations is less straightforward

Spectral Normalization

Additive Coupling Affine Coupling



Controlling Global Stability

Additive Coupling Affine Coupling

Modified Affine Scaling
● A natural way to increase stability of affine blocks is to consider different elementwise 

scaling g
● Avoiding scaling by small values strongly influences the inverse Lipschitz bound
● One option: adapt the sigmoid scaling to output values in a restricted range such as 

(0.5, 1) rather than (0, 1).
○ This improves stability, but does not completely erase qualitative stability issues



Bi-Directional Finite Differences Regularizer

● Penalty terms on the Jacobian can be used to enforce local stability
● If F is Lipschitz continuous and differentiable, then we have:

Spectral norm of the Jacobian
=

The largest singular value

● We introduce a second approximation using finite differences:

Finite Differences Regularization



Influence of Normalizing Flow Loss on Stability

● The training objective itself can impact local stability
● Consider the commonly-used normalizing flow objective:

● The log-determinant can be expressed as:

Minimizing the NLL invoves minimizing the sum of the log singular values

● Due to the slope of the log function, small singular values are avoided



Influence of Normalizing Flow Loss on Stability

● The training objective itself can impact local stability
● Consider the commonly-used normalizing flow objective:

● When using                         as the base distribution, we minimize:

● This bounds the L2 norm of the outputs of F
● Avoids large singular values
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Instability on OOD Data

● Affine models can become non-invertible outside the data domain
● Using modified sigmoid scaling in (0.5, 1) helps stabilize the model, but it still 

stuffers from exploding inverses in OOD regions
● Residual Flows have low reconstruction error globally

Reconstruction errors for different architectures

Toy 2D Data



Q: Is it possible to get unlucky when sampling the noise, obtaining a non-invertible              ?

Non-Invertible Inputs within the Dequantization Distribution

● When we train NFs, we dequantize the input data      by adding uniform noise

A: Yes, using the invertibility attack we found that there are non-invertible inputs in the 
dequantization distribution.

- Sampling such a dequantization may cause training to break



I Find Your Lack of Stability Disturbing

● No built-in mechanism to avoid unstable inverses in standard classification/regression



I Find Your Lack of Stability Disturbing

● No built-in mechanism to avoid unstable inverses in standard classification/regression

● Adding regularization via the normalizing flow loss with a small coefficient stabilizes the 
inverse mapping



Memory-Saving Gradients on CIFAR-10

● Additive-coupling models are numerically stable even without regularization
● Unregularized affine models are unstable due to exploding inverses

○ The singular value of the Jacobian of the inverse mapping is large
● Both finite-differences and normalizing flow regularizers stabilize the affine model

○ Reducing the condition number of the mapping



Summary & Practical Takeaways

● INNs enable generative modeling with exact likelihoods and computing memory-saving 
gradients

○ But the advantages of INNs rely on the assumption that the models are numerically invertible
● Tasks have different stability requirements

○ Memory-saving gradients only require local stability on the training data
○ NFs applied to test data & OOD data should ideally be stable globally

● INN architectures have different stability properties
○ Residual Flows are based on stability as a fundamental design principle
○ Additive and affine coupling models have different theoretical properties --- affine models have 

no global Lipschitz bounds
● Exploding inverses occur when the singular values of the Jacobian of the inverse 

mapping can become arbitrarily large
● Regularization can be used to stabilize INNs and avoid exploding inverses



Thank you!


