Implicit Regularization in Overparameterized Bilevel Optimization
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Motivation & Summary Warm-Start vs Cold-Start (Contd.)
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have unique solutions, but often in practice, at least one of
them is overparameterized — non-unique.

We investigate the inductive biases of different
gradient-based algorithms for jointly optimizing the inner
and outer parameters.

We distinguish between two different solution
concepts—cold-start and

The behavior depends on algorithmic choices such as the
hypergradient approximation.

Gradient-Based Bilevel Optimization

Gradient-based bilevel opt requires the gradient of the
outer objective with respect to the outer parameters, called
the hypergradient. For a given solution y* € S(x), which is
called a best-response to x:
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Common ways to compute the response Jacobian are:
dy ~ d(bk(yov )

Differentiation through unrolling:
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Implicit differentiation: —- = (ayayT) YR

Common approximations to the inverse Hessian include: 1)
truncated CG, and 2) the truncated Neumann series:
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Warm-Start vs Cold-Start

e (Cold-start: re-initialize the inner parameters and run the

iInner optimization to convergence each time we compute
the gradient for the outer parameters

jointly optimize the inner and outer
parameters in an online fashion, e.g., alternating gradient
steps with their respective objectives

outer-objective value, arg min ¢ g F(x,y).

o The pessimistic solution chooses y € S(x) that achieves the worst
outer-objective value, arg max g F(x,y):

o |n practice, due to the implicit bias of gradient descent, the y € S(x) we end
up at depends on the inner initialization yg: with cold-start, we obtain y that

minimize the distance from yo: arg min s, ||y — Yol 3

o With , the trajectory of outer parameters x during joint optimization
(shown by the arrows) influences the inner parameters y.

Proximal Inner Optimization

e \We can formalize warm-started joint optimization by considering a proximally

regularized inner objective: y* € argmin {f(x,y) + 5|y — yel|’}
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o Dataset distillation for binary classification, with two learned datapoints (outer
parameters) adapted jointly with the model weights (inner parameters).

e Because the outer obj is only used to update the outer params, one would think
that all of the info about the outer obj is compressed into the outer params.

® yields a trajectory that traces out the boundary between classes.

e Takeaway: inner params can encode a surprising amount of information about
the outer objective, even when the outer params are low-dimensional.

Parameter-space view of warm-start with full inner
optimization,
(denoted “online” ), and cold-start optimization.

Cold-start projects from the origin onto the solution set for
the current datapoint

projects from the current weights onto the
solution set for the current datapoint

By successive projection between solution sets, the inner
parameters converge to the intersection of the solution
sets, yielding inner params that perform well for multiple
outer params simultaneously.

Outer Overparameterization: Anti-Distillation
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Fourier-basis 1D linear regression: we learn the y-coord of
13 synthetic datapoints such that a regressor trained on
them will fit a single “val” datapoint, at the green X.

Left: learned datapoints (outer params) from different
hypergrad approximations: truncated
Neumann/diff-through-unrolling with different # steps K
Right: The norms of the inner and outer parameters,

lw — wpl[? and [|[A — Xgl||* as a function of K (for
Neumann /unrolling) or € (for proximal).

Takeaway: Empirically, the amount of inner optimization
we perform affects the trade-off between the norms of the
inner and outer params



