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Motivation & Summary

• Bilevel problems involve inner and outer parameters, each
optimized for its own objective.

x∗ ∈ arg min
x

F (x, y∗)

y∗ ∈ S(x) = arg min
y

f (x, y)

• Examples: hyperparameter optimization, dataset
distillation, meta-learning, NAS, and GANs.

• Most prior work assumes that the inner & outer objectives
have unique solutions, but often in practice, at least one of
them is overparameterized → non-unique.

• We investigate the inductive biases of different
gradient-based algorithms for jointly optimizing the inner
and outer parameters.

• We distinguish between two different solution
concepts—cold-start and warm-start equilibria

• The behavior depends on algorithmic choices such as the
hypergradient approximation.

Gradient-Based Bilevel Optimization

• Gradient-based bilevel opt requires the gradient of the
outer objective with respect to the outer parameters, called
the hypergradient. For a given solution y∗ ∈ S(x), which is
called a best-response to x:

dF (x, y∗)

dx
=
∂F

∂x
+
∂F

∂y∗
∂y∗

∂x

• Common ways to compute the response Jacobian are:
• Differentiation through unrolling: dy∗

dx ≈
dΦk(y0,x)

dx

• Implicit differentiation: dy∗

dx = −
(

∂2f
∂y∂y>

)−1
∂2f
∂y∂x

• Common approximations to the inverse Hessian include: 1)
truncated CG, and 2) the truncated Neumann series:(

∂2f

∂y∂y>

)−1

≈
K∑
j=0

(
I − ∂2f

∂y∂y>

)j

Warm-Start vs Cold-Start

• Cold-start: re-initialize the inner parameters and run the
inner optimization to convergence each time we compute
the gradient for the outer parameters

• Warm-start: jointly optimize the inner and outer
parameters in an online fashion, e.g., alternating gradient
steps with their respective objectives

Warm-Start vs Cold-Start (Contd.)

Decision Boundary Learned Datapoints Class 0 Class 1

Solutions for Overparameterized Inner Problems
• The optimistic solution chooses the inner parameters that achieve the best

outer-objective value, arg miny∈S(x) F (x, y).
• The pessimistic solution chooses y ∈ S(x) that achieves the worst

outer-objective value, arg maxy∈S(x) F (x, y).
• In practice, due to the implicit bias of gradient descent, the y ∈ S(x) we end

up at depends on the inner initialization y0: with cold-start, we obtain y that
minimize the distance from y0: arg miny∈S(x) ||y − y0||22.

• With warm-start, the trajectory of outer parameters x during joint optimization
(shown by the arrows) influences the inner parameters y.

Proximal Inner Optimization

• We can formalize warm-started joint optimization by considering a proximally
regularized inner objective: y∗ ∈ arg miny{f (x, y) + ε

2 ||y − yk||2}

Cold-Start Warm-Start

xt+1 = xt − α∂F∂y∗
∂y∗

∂x

y∗t+1 ∈ arg miny∈S(xt+1) ||y − y0||2
xt+1 = xt − α∂F∂y∗t

∂y∗t
∂x

y∗t+1 ∈ arg miny{f (xt+1, y) + ε
2||y − yt||2}

Inner Overparameterization: Dataset Distillation

Training on original data Warm-start joint optim. Re-train on final points
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• Dataset distillation for binary classification, with two learned datapoints (outer
parameters) adapted jointly with the model weights (inner parameters).

• Because the outer obj is only used to update the outer params, one would think
that all of the info about the outer obj is compressed into the outer params.

• Warm-starting yields a trajectory that traces out the boundary between classes.
• Takeaway: inner params can encode a surprising amount of information about

the outer objective, even when the outer params are low-dimensional.

Inner Overparameterization (Contd.)

• Parameter-space view of warm-start with full inner
optimization, warm-start with partial inner optimization
(denoted “online”), and cold-start optimization.

• Cold-start projects from the origin onto the solution set for
the current datapoint

• Warm-start projects from the current weights onto the
solution set for the current datapoint

• By successive projection between solution sets, the inner
parameters converge to the intersection of the solution
sets, yielding inner params that perform well for multiple
outer params simultaneously.

Outer Overparameterization: Anti-Distillation
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• Fourier-basis 1D linear regression: we learn the y -coord of
13 synthetic datapoints such that a regressor trained on
them will fit a single “val” datapoint, at the green X.

• Left: learned datapoints (outer params) from different
hypergrad approximations: truncated
Neumann/diff-through-unrolling with different # steps K

• Right: The norms of the inner and outer parameters,
||w − w0||2 and ||λ− λ0||2 as a function of K (for
Neumann/unrolling) or ε (for proximal).

• Takeaway: Empirically, the amount of inner optimization
we perform affects the trade-off between the norms of the
inner and outer params


