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distillation, meta-learning, NAS, and GANs. o Dataset distillation for binary classification, with two learned datapoints (outer 2_1 : - : ! : . 4\
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unique solutions. optimization influences the inner parameters w. o Full warm-start projects from the current weights wy.
Inner Overparameterization: Dataset Distillation * If we successively project between solution sets, w can
converge to the intersection of solution sets, so w can
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e Gradient-based BLO requires the total gradient of the outer
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Method Inner Update e Inner parameters can encode a surprising amount of information about the e The damping prevents the inner optimization from moving
Cold-Start wi = =) (uy 1, wo) biect] h h low-d] ional : : :
k+1 outer objective, even when the outer parameters are low-dimensional. far in low-curvature directions.
, ko =(0) % : - : « ae g . L . _y
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