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Motivation

• Bilevel problems involve nested optimization, with an outer
obj solved subject to the optimality of an inner obj:

u⋆ ∈ “ argmin
u∈U

”F (u,w⋆)

w⋆ ∈ S(u⋆) = argmin
w∈W

f (u⋆,w)

• Examples: hyperparameter optimization (HO), dataset
distillation, meta-learning, NAS, and GANs.

Outer Params u Inner Params w

f
(u
,w

)S(u)

Most work assumes that
the inner/outer objec-
tives have unique solu-
tions, but in practice,
at least one of them is
underspecified → non-
unique solutions.

Gradient-Based Bilevel Optimization (BLO)

• Gradient-based BLO requires the total gradient of the outer
objective w.r.t. the outer parameters, which we call the
hypergradient (as in HO). For a given solution w∗ ∈ S(u),
which is called a best-response to u: dF (u,w∗)

du = ∂F
∂u +

∂F
∂w∗

∂w∗

∂u

Warm-Start vs Cold-Start

• Cold-start: re-initialize w and run inner optimization to
convergence for each hypergradient computation

• Warm-start: jointly optimize w and u online, alternating
gradient steps with their respective objectives

• Let Ξ(T )(u,w) denote T steps of inner optimization

Method Inner Update

Cold-Start w⋆
k+1 = Ξ(∞)(uk+1,w0)

Full Warm-Start w⋆
k+1 = Ξ(∞)(uk+1,w⋆

k)

Partial Warm-Start w⋆
k+1 = Ξ(T )(uk+1,w⋆

k)

Theory

• Assuming F and f are quadratic and we use exact
hypergradients, the converged u⋆ minimizes distance to u0:
argminu∈argminu F (u,w⋆) ∥u− u0∥22. (u0 = 0 gives min-norm)

• For strongly-convex f , full warm-start ≡ cold-start
• Under conditions, full warm-start ≡ partial warm-start.

Warm-Start vs Cold-Start Solution Concepts

Class 0 Class 1 Decision Boundary Learned Datapoints

• Dataset distillation for binary classification, with two learned datapoints (outer
parameters) adapted jointly with the model weights (inner parameters).

• Optimistic: w achieves the best outer-objective value, argminw∗∈S(u) F (u,w).
• Pessimistic: w achieves the worst outer-objective value, argmaxw∗∈S(u) F (u,w).
• In practice: Due to implicit bias of gradient descent, the solution w∗ ∈ S(u)

we end up at depends on the initialization w0: cold-start is biased towards
simple solutions (e.g., min-norm solutions for quadratic f )

• With warm-start, the trajectory of outer parameters u during joint
optimization influences the inner parameters w.

Inner Overparameterization: Dataset Distillation
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• Because F is only used to update the outer parameters, one might think that
all of the info about F is compressed into u.

• Inner parameters can encode a surprising amount of information about the
outer objective, even when the outer parameters are low-dimensional.

• Warm-start BLO yields outer parameters that fail to generalize under
re-initialization of the inner problem.
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Explaining Warm-Start Memory
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• Simplified parameter- and data-space view of warm-start
with full inner optimization, warm-start with partial inner
optimization, and cold-start optimization.

• Here, we cycle through outer param values {u1,u2,u3,u4}
• Cold-start projects from the origin w0 onto the solution set

for the current datapoint, S(u).
• Full warm-start projects from the current weights wk.
• If we successively project between solution sets, w can

converge to the intersection of solution sets, so w can
perform well for multiple u simultaneously.

Implicit Bias from Hypergradient Approximation
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• The truncated Neumann series approximates the damped
Hessian inverse: α

∑K
j=0(I−αH)j≈ (H+ϵI)−1 where ϵ= 1

αK .
• The damping prevents the inner optimization from moving

far in low-curvature directions.
• Anti-distillation: more distilled datapoints than original

datapoints. We learn the y-coord of 13 synthetic
datapoints such that a regressor trained on them will fit a
single original datapoint, at the green dot.

• Left: learned datapoints (outer parameters) from different
hypergradient approximations: truncated
Neumann/diff-through-unrolling with different # steps K

• Right: The exact hypergradient leads to the min-norm
solution ||u− u0||2, while approximate Neumann
hypergradients lead to different (valid) outer solutions.


