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Bilevel Optimization (BLO)

● Bilevel optimization (BLO) consists of two nested sub-problems:

● When the inner or outer problem is overparameterized, there are many equally good 
solutions, so the argmins are not unique

○ The optimization dynamics can lead to implicit regularization effects

● We show that behavior depends to a surprising degree on choices such as the algorithm 
and hypergradient approximation used
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Gap Between Theory and Practice

● Theory: Typically assumes that the solutions to the inner/outer objectives are unique

● Practice: In most deep learning applications, the inner parameters are neural net weights
○ The inner problem is usually underspecified and thus has many good optima
○ The outer problem may be underspecified too, e.g., if we have many hyperparameters

Which of the many solutions do we obtain with common algorithms in practice?

● Examples: hyperparameter optimization, meta-learning, GANs, dataset distillation, etc.
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● Practice: In most deep learning applications, the inner parameters are neural net weights
○ The inner problem is usually underspecified and thus has many good optima
○ The outer problem may be underspecified too, e.g., if we have many hyperparameters

Which of the many solutions do we obtain with common algorithms in practice?

● Theory: Typically assumes that the solutions to the inner/outer objectives are unique

● Practice: The inner and/or outer problems are often underspecified
○ There is a manifold of optima
○ The optimization dynamics can lead to implicit bias

Which of the many solutions do we obtain with common algorithms in practice?



Inner and Outer Underspecification
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A manifold of optimal inner solutions for 
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Most BLO tasks in ML train a neural net in 
the inner level, which often yields an 
underspecified problem
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A manifold of optimal inner solutions for 
each outer parameter, 

Most BLO tasks in ML train a neural net in 
the inner level, which often yields an 
underspecified problem

The mapping          is a function 
(e.g., not set-valued) and maps a 
range of outer parameters to the 
same inner parameter

     maps a range of inner parameters 
to the same objective value



Sources of Implicit Bias

1 The Bilevel Optimization Algorithm – Cold-Start vs Warm-Start

● Cold-start: re-initialize      and run inner optimization to convergence for each 
hypergradient computation

● Warm-start: jointly optimize      and     in an online fashion, e.g., alternating 
gradient steps with their respective objectives

● We consider gradient-based BLO, which requires the outer gradient

response gradient

direct gradient response Jacobian
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● Computing the exact hypergradient is usually intractable
● Using truncated unrolling or truncated implicit differentiation is common

The Hypergradient Approximation

● We consider gradient-based BLO, which requires the outer gradient

response gradient

direct gradient response Jacobian
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1. A surprising amount of information about the outer objective can leak to the inner 
parameters, even when the outer parameters are low-dimensional

2. Warm-start bilevel optimization yields outer parameters that fail to generalize under 
re-initialization of the inner problem.

Takeaways



● We can compute          using the Neumann series:

where

Intractable to store or invert

What is the effect of using the truncated Neumann series on the outer optimization?

● In practice, we use a truncation of the infinite series

k=0

Implicit Bias of the Hypergradient Approximation

● Another source of implicit bias is the hypergradient approximation
● Assuming uniqueness, using the implicit function theorem, the hypergradient is:



Implicit Bias of the Hypergradient Approximation

● Truncated Neumann approximates the inverse of the damped Hessian 

● The response Jacobian from the truncated Neumann 
series will only capture how w depends on u in these 
high-curvature directions

where 

● The damped and un-damped inverse Hessians behave 
similarly in high curvature directions

● But the damped Hessian is insensitive to low-curvature 
directions of the inner loss



Implicit Bias of the Hypergradient Approximation

● Different hypergradient approximations lead to different outer solutions, with varying norms

Outer Optimization Trajectories Converged Outer Parameter Norms



Thank you!

asteroidhouse/implicit-bias-blo

tinyurl.com/yrnf4zmk

https://github.com/asteroidhouse/implicit-bias-blo-dev
http://tinyurl.com/yrnf4zmk
http://tinyurl.com/yrnf4zmk

