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Bilevel Optimization (BLO)

u* €'argmin’ F'(u, w") suchthat ~w* € S(u") = argmin f(u*,w)
Outer Outer Inner Inner
parameters objective parameters objective

e Examples: hyperparameter optimization, meta-learning, GANs, dataset distillation, etc.
e Theory: Typically assumes that the solutions to the inner/outer objectives are unique

e Practice: The inner and/or outer problems are often underspecified
o There is a manifold of optima
o The optimization dynamics can lead to implicit bias

mm) \Which of the many solutions do we obtain with common algorithms in practice?




Inner and Outer Underspecification
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Most BLO tasks in ML train a neural net in
the inner level, which often yields an
underspecified problem
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The mapping S(u) is a function
(e.g., not set-valued) and maps a
range of outer parameters to the
same inner parameter
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to the same objective value



Sources of Implicit Bias

e We consider gradient-based BLO, which requires the outer gradient dF(u, w”(u))

du
1 The Bilevel Optimization Algorithm — VS
° re-initialize w and run inner optimization to convergence for each
hypergradient computation
° jointly optimize w and u in an , €.9., alternating

gradient steps with their respective objectives



Sources of Implicit Bias

We consider gradient-based BLO, which requires the outer gradient dF(u, w”(u))

du

1 The Bilevel Optimization Algorithm — VS

re-initialize w and run inner optimization to convergence for each
hypergradient computation

jointly optimize w and u in an online fashion, e.g., alternating
gradient steps with their respective objectives

2  The Hypergradient Approximation

Computing the exact hypergradient is usually intractable
Using fruncated unrolling or truncated implicit differentiation is common
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Warm-Start vs Cold-Start

Takeaways

A surprising amount of information about the outer objective can leak to the inner
parameters, even when the outer parameters are low-dimensional

Warm-start bilevel optimization yields outer parameters that fail to generalize under
re-initialization of the inner problem.
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Implicit Bias of the Hypergradient Approximation

e Another source of implicit bias is the hypergradient approximation
e Assuming uniqueness, using the implicit function theorem, the hypergradient is:

d e OF |fowr(u)\|'  oF dw*(u) 2f \ ' o%f
duF(u’W(u))_8u+< u ) w (1) where ou :_(W> Fwou
\ / I&_l

Intractable to store or invert

e We can compute H™' using the Neumann series: H' = (I - aH)"
k=0

e In practice, we use a fruncation of the infinite series

=) \What is the effect of using the truncated Neumann series on the outer optimization?
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Implicit Bias of the Hypergradient Approximation

Truncated Neumann approximates the inverse of the damped Hessian (H + €I)™*

K
az I—aH)Y ~ (H+el)™!  where €=—
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The damped and un-damped inverse Hessians behave
similarly in high curvature directions

But the damped Hessian is insensitive to low-curvature
directions of the inner loss



Implicit Bias of the Hypergradient Approximation

Different hypergradient approximations lead to different outer solutions, with varying norms

Outer Optimization Trajectories
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https://github.com/asteroidhouse/implicit-bias-blo-dev
http://tinyurl.com/yrnf4zmk
http://tinyurl.com/yrnf4zmk

