On Implicit Bias in Overparameterized Bilevel Optimization

Paul Vicol, Jonathan Lorraine, Fabian Pedregosa, David Duvenaud, Roger Grosse

Bilevel Optimization (BLO)

$\mathbf{u}^* \in "rgmin" F(\mathbf{u}, \mathbf{w}^*)$		such that	$\mathbf{w}^{*}\in\mathcal{S}(\mathbf{u}%)$	$f^*) = \arg\min f(\mathbf{u}^*, \mathbf{w})$
1	$\mathbf{u} {\in} \mathcal{U}$		↑	$\mathbf{w} {\in} \mathcal{W}$
Outer	Outer Outer		Inner	Inner
parameters	objective	p	parameters	objective

• **Examples:** *hyperparameter optimization, meta-learning, GANs, dataset distillation, etc.*

Bilevel Optimization (BLO)

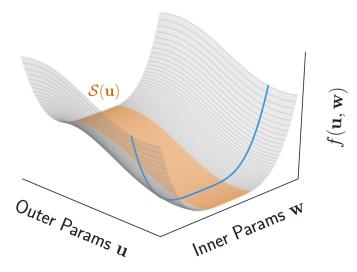
$\mathbf{u}^* \in "rgmin" F(\mathbf{u}, \mathbf{w}^*)$		such that	$\mathbf{w}^* \in \mathcal{S}(\mathbf{u})$	$\mathbf{u}^*) = \arg\min f(\mathbf{u}^*, \mathbf{w})$
∱ Outer	$\mathbf{u} \in \mathcal{U}$ Outer		† Inner	w∈₩ Inner
parameters			parameters	objective

- **Examples:** *hyperparameter optimization, meta-learning, GANs, dataset distillation, etc.*
- **Theory:** Typically assumes that the solutions to the inner/outer objectives are unique
- **Practice:** The inner and/or outer problems are often *underspecified*
 - There is a *manifold of optima*
 - The optimization dynamics can lead to implicit bias

Which of the many solutions do we obtain with common algorithms in practice?

Inner and Outer Underspecification

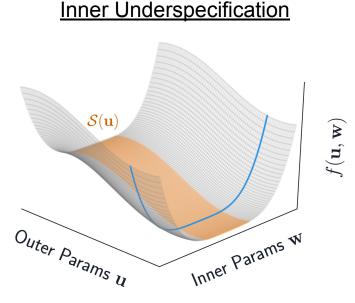
Inner Underspecification

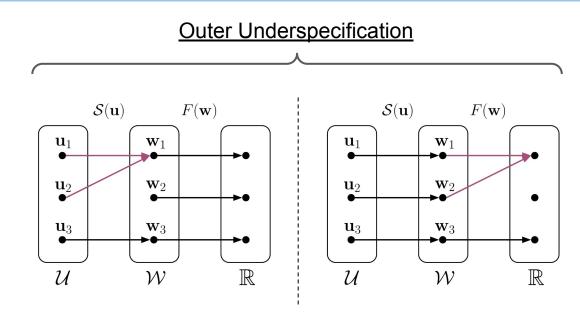


A manifold of optimal inner solutions for each outer parameter, $\mathcal{S}(\mathbf{u})$

Most BLO tasks in ML train a neural net in the inner level, which often yields an underspecified problem

Inner and Outer Underspecification





A manifold of optimal inner solutions for each outer parameter, $S(\mathbf{u})$

Most BLO tasks in ML train a neural net in the inner level, which often yields an underspecified problem The mapping $S(\mathbf{u})$ is a function (e.g., not set-valued) and maps a range of outer parameters to the same inner parameter

F maps a range of inner parameters to the same objective value

Sources of Implicit Bias

• We consider gradient-based BLO, which requires the outer gradient $\frac{d}{d}$

 $\frac{dF(\mathbf{u},\mathbf{w}^{\star}(\mathbf{u}))}{d\mathbf{u}}$

1 The Bilevel Optimization Algorithm – Cold-Start vs Warm-Start

- **Cold-start:** re-initialize w and run inner optimization to convergence for each hypergradient computation
- Warm-start: jointly optimize w and u in an *online fashion*, e.g., alternating gradient steps with their respective objectives

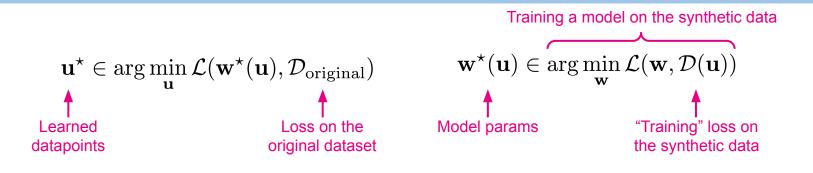
Sources of Implicit Bias

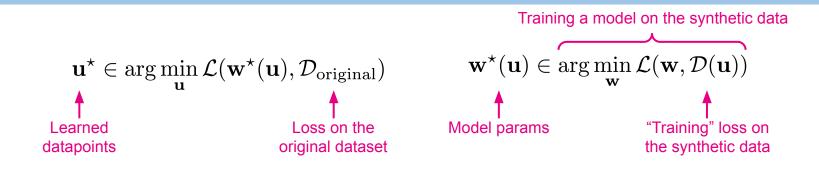
• We consider gradient-based BLO, which requires the outer gradient $\frac{dF(\mathbf{u}, \mathbf{w}^{\star}(\mathbf{u}))}{d\mathbf{u}}$

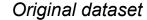
1 The Bilevel Optimization Algorithm – Cold-Start vs Warm-Start

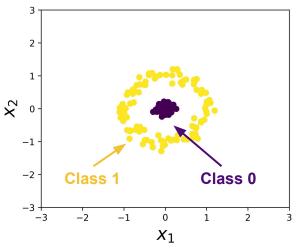
- Cold-start: re-initialize w and run inner optimization to convergence for each hypergradient computation
- Warm-start: jointly optimize w and u in an *online fashion*, e.g., alternating gradient steps with their respective objectives

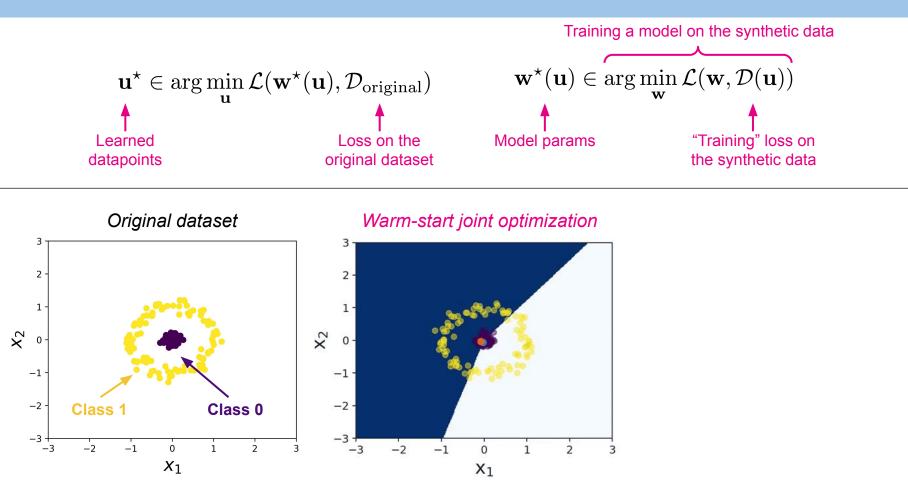
- Computing the exact hypergradient is usually *intractable*
- Using *truncated unrolling* or *truncated implicit differentiation* is common

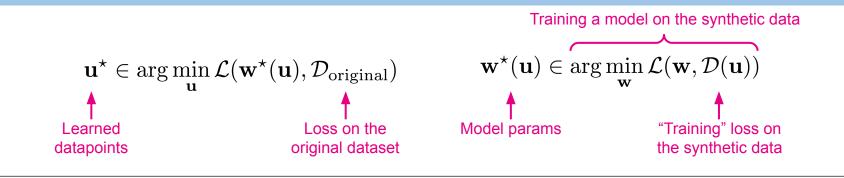




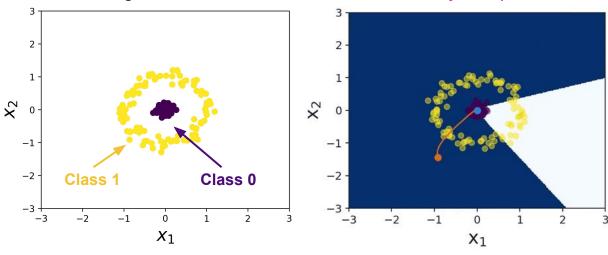


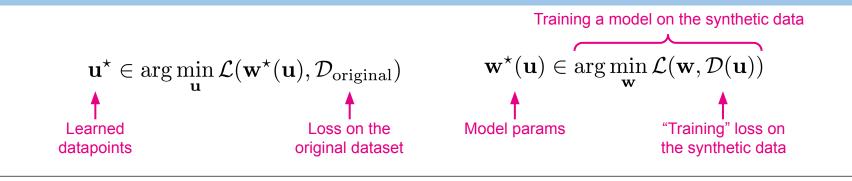




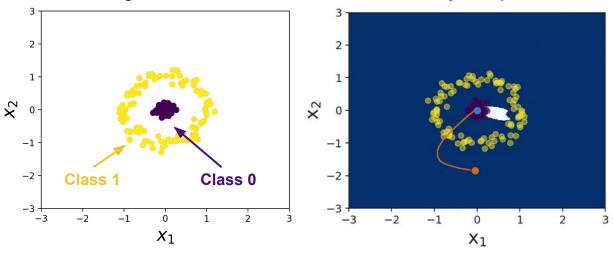


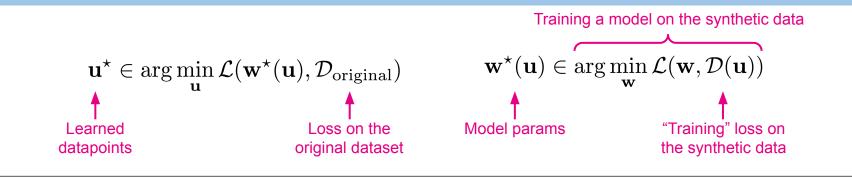
Original dataset



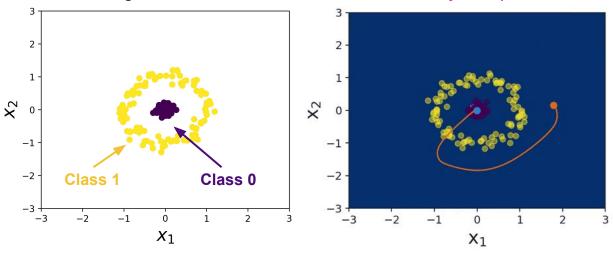


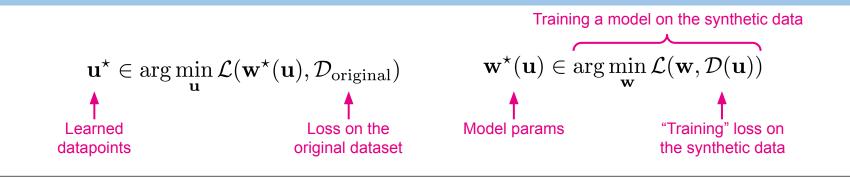
Original dataset



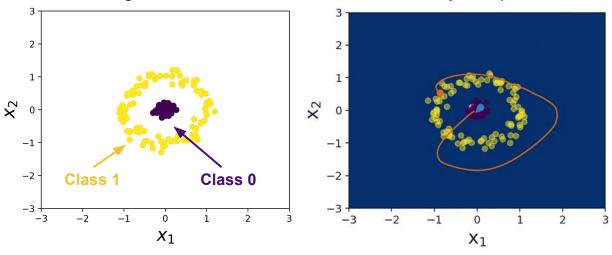


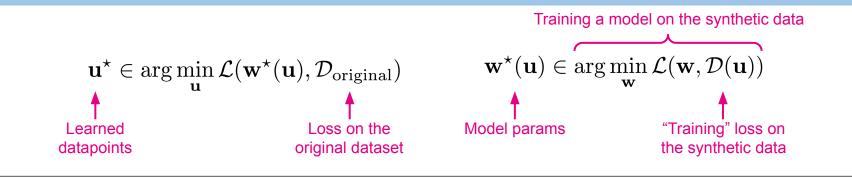
Original dataset



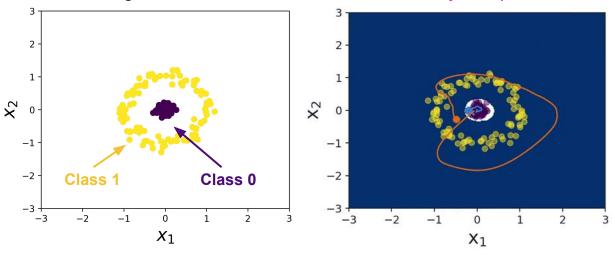


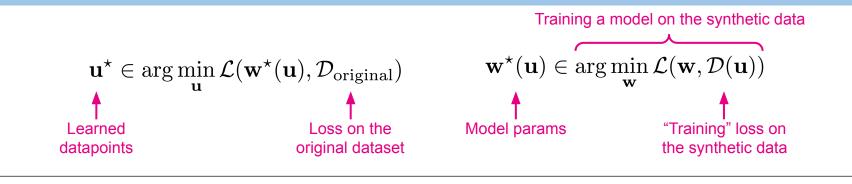
Original dataset



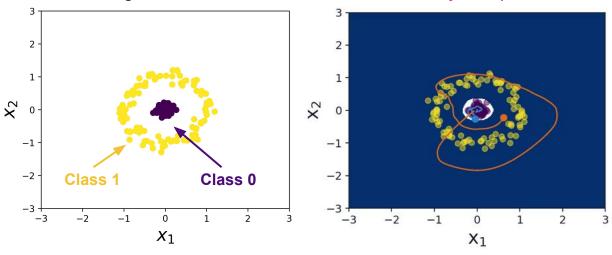


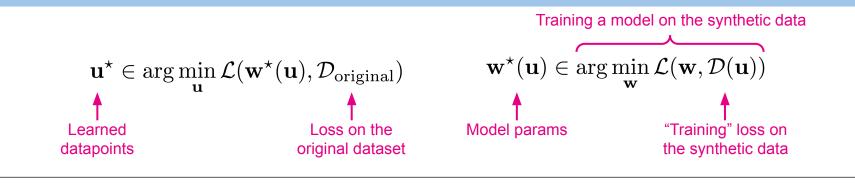
Original dataset



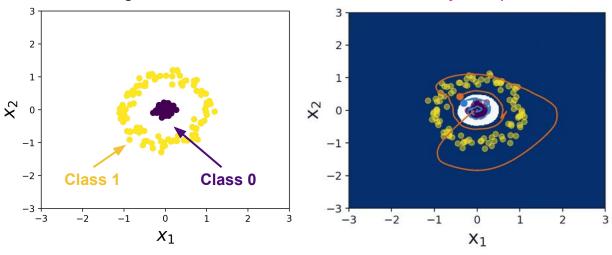


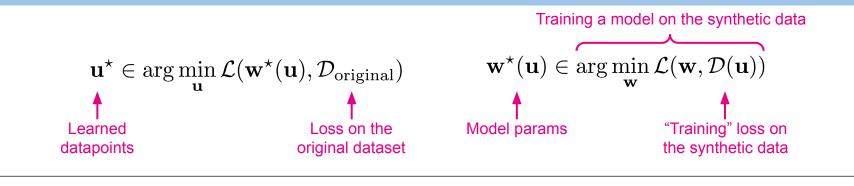
Original dataset



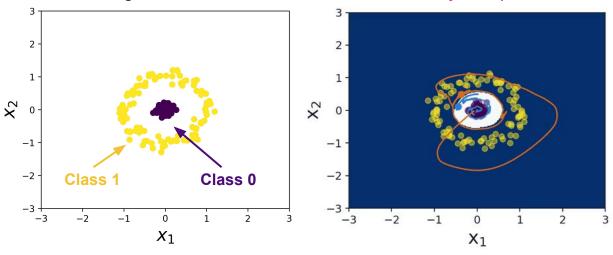


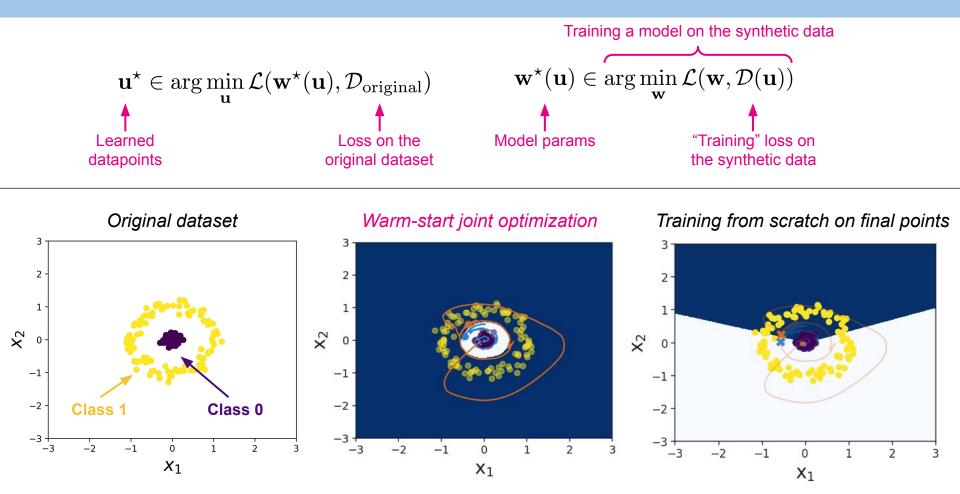
Original dataset





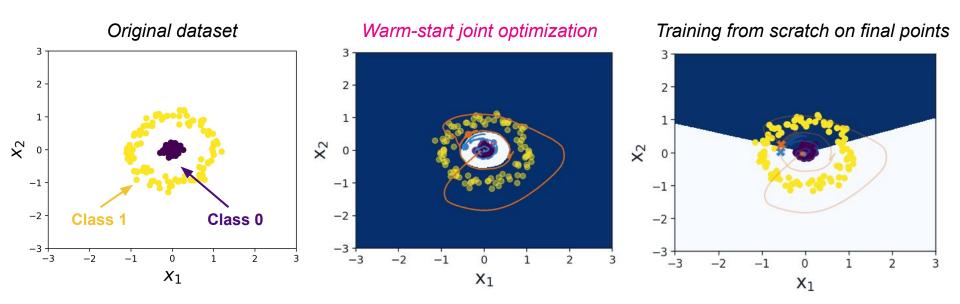
Original dataset





<u>Takeaways</u>

- 1. A surprising amount of *information about the outer objective can leak to the inner parameters*, even when the outer parameters are low-dimensional
- 2. Warm-start bilevel optimization yields *outer parameters that fail to generalize* under re-initialization of the inner problem.



Implicit Bias of the Hypergradient Approximation

- Another source of implicit bias is the *hypergradient approximation*
- Assuming uniqueness, using the implicit function theorem, the hypergradient is:

$$\frac{d}{d\mathbf{u}}F(\mathbf{u},\mathbf{w}^{\star}(\mathbf{u})) = \frac{\partial F}{\partial \mathbf{u}} + \left(\frac{\partial \mathbf{w}^{\star}(\mathbf{u})}{\partial \mathbf{u}}\right)^{\top} \frac{\partial F}{\partial \mathbf{w}^{\star}(\mathbf{u})} \qquad \text{where} \qquad \boxed{\frac{\partial \mathbf{w}^{\star}(\mathbf{u})}{\partial \mathbf{u}}} = -\left(\frac{\partial^{2}f}{\partial \mathbf{w}\partial \mathbf{w}^{\top}}\right)^{-1} \frac{\partial^{2}f}{\partial \mathbf{w}\partial \mathbf{u}} \\ \mathbf{H}^{-1} \qquad \mathbf{H}^{-1} \qquad \text{Intractable to store or invert}$$

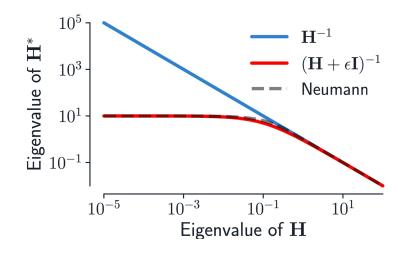
- We can compute \mathbf{H}^{-1} using the *Neumann series*: $\mathbf{H}^{-1} = \alpha \sum_{k=0}^{\infty} (\mathbf{I} \alpha \mathbf{H})^k$
- In practice, we use a *truncation* of the infinite series

What is the effect of using the truncated Neumann series on the outer optimization?

Implicit Bias of the Hypergradient Approximation

• Truncated Neumann approximates the inverse of the damped Hessian $(\mathbf{H} + \epsilon \mathbf{I})^{-1}$

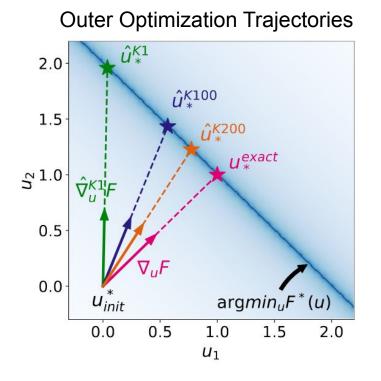
$$\alpha \sum_{j=0}^{K} (\mathbf{I} - \alpha \mathbf{H})^j \approx (\mathbf{H} + \epsilon \mathbf{I})^{-1}$$
 where $\epsilon = \frac{1}{\alpha K}$



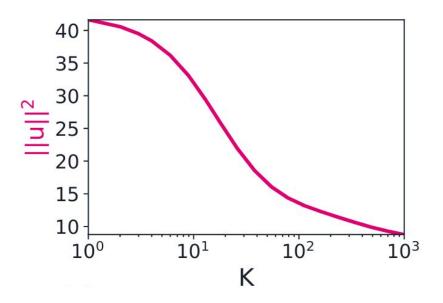
- The damped and un-damped inverse Hessians behave similarly in high curvature directions
- But the damped Hessian is *insensitive to low-curvature directions of the inner loss*

Implicit Bias of the Hypergradient Approximation

• Different *hypergradient approximations lead to different outer solutions*, with varying norms



Converged Outer Parameter Norms



Thank you!