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Outline

@ What are disentangled representations?

@ Why are disentangled representations useful?
- Robustness on out-of-distribution data (domain adaptation & domain generalization)
- Fairness
- Interpretability
- Controllable generative modelling

@ How can we /earn disentangled representations?

- Supervised & unsupervised
- VAEs and friends (B-VAE, B-TCVAE, FactorVAE)
- Afew domain adaptation methods



Disentangled Representations

e A disentangled representation is one in which different factors of variation are
represented by different components of the representation
o e.g., different dimensions in the latent space
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What are disentangled representations good for?




Robustness to Distribution Shifts

e We want to learn classifiers that generalize to new domains

Source Domains (Palntmgs & Sketches)
" : Target Domain (Real Images)

e Approaches typically fall into two categories:
1) Ones that discard domain information from the learned representation
2) Ones that preserve information about both domain and class, using disentangled latent
subspaces

e Domain adaptation learns representations from source domains that transfer to a
specific, known target domain

e Domain generalization learns representations from source domains, that can be
transferred to previously unseen domains at test time



Fairness

e Automated systems are increasingly used to make decisions that impact people’s lives
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e In order to make fair decisions, the algorithm should not depend on certain sensitive
attributes, e.g., race or gender

e \We do not want our models to perpetuate biases present in the dataset (e.g., due to
historical discrimination/unfair treatment)

e We wish to purge information about the sensitive attributes from the learned representation



Controllable Generative Modeling

e If arepresentation 2 is disentangled, we can modify one dimension to change a single
attribute, yielding a meaningful modified representation z

e This can allow for controllable generative modeling
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He et al.. “AttGAN.” 2017.



How can we learn disentangled representations?




Disentangling with Supervision

e Given full supervision for the values of attributes, you could train classifiers on each

latent subspace
o  This would enforce that each subspace contains information about a specific attribute
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e However, this does not prevent the encoder from simply encoding all attributes in each

latent subspace
o Need to explicitly enforce independence between subspaces



Mutual Information

e Mutual information (MI) measures the statistical dependence between random variables

I(z;y) = Dxvlp(z, y)||p(z)p(y)]

\ J

The divergence between the joint distribution
and the product of marginal distributions
e Recallthatif I and Yy are independent, then p(z,y) = p(z)p(y) and thus I(z;y) = 0
e MI minimization is at the heart of many approaches to disentanglement

e Jotal correlation (TC) is a generalization of Ml between multiple random variables
C(xy,...,x,) = Dxrlp(z1,...,2.)||p(x1) - - - p(xn)]



A Generic Way to Minimize Mutual Information

e To minimize I(x;y) we want the distributions p(z,y) and p(z)p(y) to be close
o Can be done using many distribution alignment/matching techniques
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A Generic Way to Minimize Mutual Information

e To minimize I(x;y) we want the distributions p(z,y) and p(z)p(y) to be close
o Can be done using many distribution alignment/matching techniques
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A Generic Way to Minimize Mutual Information

e To minimize I(x;y) we want the distributions p(z,y) and p(z)p(y) to be close
o Can be done using many distribution alignment/matching techniques
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Train a discriminator to distinguish between samples from these distributions
and train the encoder adversarially



Unsupervised Disentanglement: VAEs

e In unsupervised disentanglement, we only have samples from the data distribution
without access to the true factors of variation
e \Variational autoencoders (VAESs) are unsupervised, latent-variable generative models
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e Trained by maximizing the evidence lower bound (ELBO), which is a lower bound on the
marginal likelihood p(z) = / p(z, 2)dz

N

ELBO: - D [Eq(opaty lop(e]2)] — K Llg(ela)]p(2)]

=1



B-VAE, 3-TCVAE, and FactorVAE

B-VAE upweights the KL divergence term with g > 1:

N

1 : :
Modified ELBO: ; [Eq(zlw“) log p(zV|2)] — 5KL[q(z\x(z))||p(z)]]

B-VAE has a trade-off between reconstruction quality and disentanglement
This is due to a problem hidden within the KL term of the ELBO

The KL term can be decomposed as:

Epyaca (@) (K L(a(2]2)][p(2))] = I(z; 2) + K L(q(2)]|p(2))

Y

Penalizing this reduces the Encourages independence
amount of info about x stored in in the dimensions of z, by
z which leads to poor recons. matching the prior



B-VAE, B-TCVAE, and FactorVAE

FactorVAE combines the standard ELBO with an adversarial term minimizing the total
correlation between latent dimensions
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Kim & Mnih. “Disentangling by Factorizing.” ICML 2018.



Adversarial Discriminative Domain Adaptation (ADDA)

lUtNDt



Adversarial Discriminative Domain Adaptation (ADDA)

Source classifier

lUtNDt



Adversarial Discriminative Domain Adaptation (ADDA)

Ty ~ Dy Domain invariant
representations



Adversarial Discriminative Domain Adaptation (ADDA)
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Unified Feature Disentangler Network (UFDN)

e Allows for explicit control over the domain; can interpolate between different domains
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Liu et al

., “A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation.” NeurlPS 2018.



Unified Feature Disentangler Network (UFDN)

e Allows for explicit control over the domain; can interpolate between different domains
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Liu et al., “A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation.” NeurlPS 2018.



Correlations Between Factors

e Most work assumes that the ground-truth factors of variation are independent
o That s, that there are no correlations between attributes
o This holds for simple/synthetic benchmark tasks (e.g., dSprites, Shapes3D)
e But this real data often has correlations between attributes, breaking this assumption
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