
Meta-Learning with Hypernetworks

Slides by: Paul Vicol



Overview

● A hypernetwork is a neural network that outputs the weights of another neural network 
(often called the target network)

● Hypernetworks are a useful means to solve bi-level optimization problems, as well as 
other “meta-learning” type tasks:
○ Hyperparameter optimization
○ Multi-objective optimization (MOO)
○ Continual learning
○ Efficient training of NN ensembles



Hyperparameter Optimization
Lorraine & Duvenaud, “Stochastic Hyperparameter Optimization through Hypernetworks.” 2018

Mackay*, Vicol*, et al., “Self-Tuning Networks.” ICLR 2019

https://arxiv.org/abs/1802.09419
https://arxiv.org/abs/1903.03088


while True:
hparam = get_hyperparameter_value()
W = init_weights()

while not converged:
W = gradient_step(W, hparam)

Hyperparameter Optimization as Bilevel Optimization

● Hyperparameter optimization is a bilevel optimization problem:

subject to

Outer loop over
hyperparameters

Inner loop to optimize 
model parameters



Gradient-Based Approaches to HO

“Best-response” function

Goal: 

How the weights change in 
response to a small change 

in the hyperparameters

Bilevel Problem:



Approximating the Best-Response Function

● Idea: Learn a parametric approximation         to the best-response function

● Since        is differentiable, we can use gradient-based optimization to update the 
hyperparameters

● By training         we do not need to re-train models from scratch; the 
computational effort needed to fit         around each hyperparameter is not wasted

● How can we save computation by avoiding training from scratch each time?
● The “best-response” function maps hyperparameters to optimal weights on the training set:

● Advantages:



Approximating the Best-Response Function

● Update the approximation parameters      using the chain rule:

● Update the hyperparameters using the validation loss gradient:



Hypernetwork-Based Approaches to HO

Train the hypernetwork to produce good weights 
for any hyperparameter 

Find the optimal hyperparameters via gradient 
descent on 

Global Best-Response Approximation

Lorraine and Duvenaud. Stochastic Hyperparameter Optimization through Hypernetworks. 2018



Scalability Challenges

● Two core challenges to scale this approach to large networks:

1. Intractable to model              over the entire hyperparameter space, e.g., the 
support of          

2. Difficult to learn a mapping                  when      are the weights of a large network

Approximate the best-response locally in a neighborhood around 
the current hyperparameter value 

Solution:

STNs introduce a compact approximation to the best-response 
by modulating activations based on the hyperparameters

Solution:



Locally Approximating the Best-Response

● Jointly optimize the hypernetwork parameters and the hyperparameters by alternating 
gradient steps on the training and validation sets

Local Best-Response Approximation

Train the hypernet to produce good weights 
around the current hyperparameter 

Update the hyperparameters using the local 
best-response approximation

Lorraine and Duvenaud. Stochastic Hyperparameter Optimization through Hypernetworks. 2018



Effect of the Sampling Distribution

Just rightToo wide

The hypernetwork will match 
the best-response at the 
current hyperparameter, but 
may not be locally correct

The hypernetwork may be 
insufficiently flexible to model 
the best-response, and the 
gradients will not match

The gradient of the 
approximation will match 
that of the best-response

Too small



Compact Best-Response Approximation

● We propose an architecture that computes the usual elementary weight/bias, plus an 
additional weight/bias that is scaled by a linear transformation of the hyperparameters:

Matmul
Construct    -dependent scaling factors

Gate the hidden state

Matmul

Matmul

+

*omitting biases

● Memory-efficient: roughly 2x number of parameters and scales well to high dimensions

● Naively representing the mapping                 is intractable when        is high-dimensional



Compact Best-Response Approximation

Matmul
Construct    -dependent scaling factors

Gate the hidden state

Matmul

Matmul

+

*omitting biases

● This architecture can be interpreted as directly operating on the pre-activations of the 
layer, and adding a correction to account for the hyperparameters:

Usual computation 
of Linear layer

Correction term to account for 
the hyperparameters

● Sample-efficient: since the predictions can be computed by transforming 
pre-activations, the hyperparameters for different examples in a mini-batch can be 
perturbed independently
○ E.g., a different dropout rate for each example



STN Algorithm



STN - LSTM Experiments



STN - CNN Experiment Results

● Again, STNs substantially outperform grid/random search and BayesOpt
○ Achieve lower validation loss than BayesOpt in < ¼ the time



What can we and what can’t we tune?

● STNs can tune most regularization hyperparameters including
○ Dropout
○ Continuous data augmentation hyperparameters (hue, saturation, contrast, etc.)
○ Discrete data augmentation hyperparameters (# and length of cutout holes)

Matmul
Construct    -dependent scaling factors

Gate the hidden state

Matmul

Matmul

+

*omitting biases

● Because we collapsed the bilevel problem into a single-level one, there is no inner 
training loop

What can we tune?

What can’t we tune?

We cannot tune inner optimization hyperparameters like learning rates



Gradient-Based Approaches to HO

Implicit Differentiation Iterative Differentiation Hypernet-Based

● Expensive: Solving the linear 
system with CG requires 
Hessian-vector products

● Expensive when the number 
of gradient steps increases

● Does not require differentiating 
through optimization

● Efficient, can also optimize 
discrete & stochastic 
hyperparameters

● Assuming training has 
converged, we can use the 
implicit function theorem

● Use autodiff to backprop 
through training

● Full optimization procedure or 
a truncated version of it

● Learn a hypernetwork 

parameterized by             
to map hyperparameters 
to network weights

Backprop through optimization steps



Multi-Objective Optimization
Navon et al., “Learning the Pareto Front with Hypernetworks.” ICLR 2021.

https://arxiv.org/abs/2010.04104


Multi-Objective Optimization

● Multi-objective optimization problems are prevalent in ML
● Constrained problems: learn a single task while finding solutions that satisfy certain 

properties, like fairness or privacy
○ Usually by optimizing a main task with auxiliary loss terms to encourage the 

additional properties (e.g., fairness)
● The set of optimal solutions to a multi-objective problem is called the Pareto front

○ Each point on the front represents a different trade-off between possibly conflicting 
objectives.



The Pareto Front

● In many cases, we are interested in more than one predefined preference
○ Either because the trade-off is not known prior to training, OR
○ Because there are many possible trade-offs of interest

● Pareto front learning (PFL): design a model that can be applied at inference time to 
any given preference direction

● Naive approach: run a single-preference optimization multiple times
○ Scalability issue: number of models to be trained to cover the objective space 

grows exponentially with the number of objectives (computational cost), and we 
need to store all trained models in memory to switch between them later on 
(memory cost)

● Hypernet approach: learn a mapping from preference → network weights



Multi-Objective Optimization

● A separate model has to be trained for each point on the 
Pareto front

● The trade-off between objectives must be specified a-priori

● Learns the entire Pareto front simultaneously using a 
single hypernet

● Runtime efficient compared to training multiple models
● Generalizes to new preference vectors

Typical Approaches to MOO Pareto Hypernetworks (PHN)



Some Classic Approaches for MOO

● Linear Scalarization (LS):
○ Most straightforward approach to MOO, where we define a single loss based on a 

vector of weights for each loss term,     :

● An MOO is defined by a vector of m losses:

● Exact Pareto Optimal (EPO): a more advanced MOO method that can converge to a 
desired ray in loss space



Pareto Hypernetworks

● “Pareto hypernetworks” (PHNs) are trained similarly to fitting a hypernet globally on the 
hyperparameter space---here the “hyperparameters” are preferences over loss terms



PHN: Fairness

● 3-objective optimization problem with a classification objective and two fairness 
objectives: False-Positive (FP) fairness and False Negative (FN) fairness



PHN: Fairness

● 3-objective optimization problem with a classification objective and two fairness 
objectives: False-Positive (FP) fairness and False Negative (FN) fairness



Continual Learning
Oswald et al., “Continual Learning with Hypernetworks.” ICLR 2020.

https://arxiv.org/abs/1906.00695


The Continual Learning Problem

● In continual learning, we want to learn a new task                      starting with weights            
the goal is to find new parameters           such that:

1. It retains or improves performance on the previous tasks, and
2. It solves the new task

● Key idea of this work: address catastrophic forgetting at the meta-level
○ Instead of retaining performance of a model on the previous data when it sees a 

new task, get a hypernet to remember how to output the appropriate target 
network weights for each task



Task-Conditioned Hypernets

● Task-conditioned hypernet: generate weights based on task identity
● A fixed embedding e^{(i)} is learned for each task



Rehearsing

● One approach to avoid catastrophic forgetting:

● This is called rehearsing, and requires storing and iterating over previous data
● Memory expensive and not strictly online learning!

1. Store data from previous tasks and the corresponding model outputs
2. Regularize the output of the updated model so that its predictions agree with the 

previous model (e.g., before the new task):



Hypernetwork Output Regularization

● First, compute the candidate change            that minimizes the task loss:

● Then, add a hypernet output regularizer that ensures that the hypernet continues to 
output the same weights for old tasks that it previously learned:



Slight Tangent: Chunked Hypernet Parameterization

● For scaling to larger networks, they use a chunked 
hypernetwork

● Outputs a chunk of network weights (e.g., a layer) at 
a time, conditioned on the task embedding e^{(i)} and 
a particular chunk embedding c^{(k)}
○ Chunk embeddings are specific to each layer, 

but shared across all tasks.
○ So the hypernet learns to map (e^{(i)}, c^{(k)}) → 

weights for layer k of the model for task e^{(i)}
● Here, the number of learned hypernet params is 

smaller than the number of target net params



Experiment: 1D Regression

Fitting all polynomials 
simultaneously

Training on each 
polynomial sequentially 

causes forgetting of 
previous tasks

Using the hypernet with 
the memory-preserving 

regularizer retains 
performance on old tasks



Experiment: Permuted MNIST

● Each task is a classification problem 
on a fixed random permutation of 
MNIST pixels

● Low similarity between generated 
tasks → pMNIST studies the 
memory capacity of a continual 
learner



Q/A


