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Motivation & Summary

• Unrolled computation graphs arise in many scenarios
• Training RNNs, tuning hyperparameters through unrolled optimization,

reinforcement learning, training learned optimizers.

• Current approaches to optimizing parameters in such computation
graphs suffer from high variance gradients, bias, slow updates, or large
memory usage.
• PES eliminates bias from these truncations by accumulating correction

terms over the entire sequence of unrolls.
• PES allows for rapid parameter updates, has low memory usage, is

unbiased, and has reasonable variance characteristics.
• PES is unbiased, allowing it to converge to correct solutions that are

not found by TBPTT or truncated ES
• Loss surface smoothing induced by PES is beneficial for HO,

overcoming erratic meta-loss surfaces
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Task

• Dynamical system with state st governed by parameters θ:
st = f (st−1, xt;θ). We wish to minimize L(θ) =

∑T
t=1 Lt(st;θ).

• BPTT and RTRL are expensive and have high latency; TBPTT suffers
from truncation bias; approximations to RTRL have higher variance.
• Long unrolls can lead to chaotic or poorly conditioned loss landscapes

Evolution Strategies

• Evolution Strategies (ES) is a method for estimating a descent
direction for arbitrary black-box functions using stochastic finite
differences.

∇θEθ̃∼N (θ,σ2I )

[
L(θ̃)

]
≈ ĝES =

1

σ2
Eε∼N (0,σ2I ) [εL(θ + ε)]

• ES is trivially parallelizable, and thus highly scalable
• ES optimizes a Gaussian-smoothed loss surface
• Helps overcome pathological structure in long-unroll meta-objectives

• Can optimize arbitrary black-box functions, e.g., non-differentiable
objectives like accuracy rather than loss
• However, ES suffers from truncation bias similarly to TBPTT

• Goal: Can we design an algorithm with the benefits of ES,
that does not suffer from truncation bias?

Persistent Evolution Strategies (PES)

• PES divides the computation graph into a series of truncated unrolls,
and performs an ES-based update step after each unroll.
• gPES decomposes into a sum of sequential gradient estimates,

ĝPES =
1

σ2
Eε

[
(I⊗ 1>) vec (ε) L(Θ + ε)

]
=

1

σ2
Eε

 T∑
t=1

ξtLt(θ1 + ε1, . . . ,θt + εt)


• We obtain unbiased gradient estimates from partial unrolls by:

1. Not resetting the particles between unrolls
2. Accumulating perturbations each particle has experienced over all unrolls.

• The PES algorithm (using antithetic sampling) is as follows:
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• The variance of the
PES gradient estimate
depends on the
correlation between
gradients at each unroll.
• On char-level PTB, we

see two regimes as we
increase #unrolls:
initial decrease in
variance, followed by
linear increase

Compute and Memory Cost

• For each particle, PES uses KF compute, where K is the truncated
unroll length and F is the cost of a forward pass
• For each particle, PES stores the state st and perturbation

accumulator ξt.
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• Synthetic task with
arbitrarily long-term
dependencies
• Learn a scalar that has a

positive short-term
influence but a negative
long-term influence
• Truncated algorithms fail;

PES performs similarly to
RTRL given enough
particles

Learned Optimizer Meta-Optimization
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• We meta-train an
MLP-based learned
optimizer.
• Used to train an MLP on

CIFAR-10.
• PES achieves lower

losses, and is more
consistent across random
initializations of the
learned optimizer.

Hyperparameter Optimization
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9.6 • Tuning LR schedule for
an MLP on MNIST
• The inner-problem length

is T = 5000, and we
used truncations of
length {10, 100}
• PES can also optimize

non-differentiable
objectives such as
validation accuracy

Learning Policy for Continuous Control

• PES can train a policy
for continuous control
using partial unrolls
• We found that PES is

more efficient than ES
applied to full episodes,
while truncated ES fails
due to bias


