Unbiased Gradient Estimation in Unrolled Computation
Graphs with Persistent Evolution Strategies

Paul Vicol, Luke Metz, Jascha Sohl-Dickstein

ICML 2021

= UNIVERSITY OF % VECTOR
GO gle % TORONTO INSTITUTE

Problem Setup: Unrolled Computation Graphs

e Consider a dynamical system that evolves according to: §; = f(st_l, It 0)

L1(81;0) La(s2;0) Lj(s3:0) 4 Task St ())
T T T RNN Hidden State RNN Params
cee —p 81 — 82 — 83 — > s Hypg;':iar;?::i?r: Model Params Hyperparameters
T T T Learned |\, .. params Learned Optimizer
Optimizers Params
0 0 9 _ RL Environment State Policy Params/

Objective: L(O) = Z?:l Lt(St; Ht)

e Problem: Most approaches suffer from fruncation bias, high-variance gradients, slow
updates, or high memory usage

Pathological Meta-Loss Surfaces and ES

e Another issue: long unrolls can lead to chaotic or poorly conditioned loss landscapes
o This is especially common for unrolled optimization

Metz et al.,
Understanding and
correcting pathologies
in the training of
learned optimizers.
ICML 2019.

Unroll Length

Pathological Meta-Loss Surfaces and ES

e Another issue: long unrolls can lead to chaotic or poorly conditioned loss landscapes
o This is especially common for unrolled optimization

5 10

Unroll Length

Metz et al.,
Understanding and
correcting pathologies
in the training of
learned optimizers.
ICML 2019.

e Consider optimizing a Gaussian-smoothed meta-objective Eg_\r g ;21 [L(9)]

e Evolution strategies (ES) is a method for estimating a descent direction using

stochastic finite differences:

_q 1
veEéNN(O,a2I) |:L(0)] ~ QES — ?EENN(O,OQI) [GL(O + 6)]

Pros & Cons of ES

e ES optimizes a Gaussian-smoothed loss surface

e Does not use backprop, so does not require storing states in memory

e Can optimize arbitrary black-box functions, e.g., non-differentiable objectives like
accuracy rather than loss

e Is highly scalable on parallel compute, and can have low variance with antithetic
sampling

e In principle, using ES on full unrolls of the computation graph would work well
o Problem: we have to do a full unroll for each parameter update, which is slow

e |In practice, ES is applied to truncated unrolls
o Problem: Suffers from truncation bias similarly to TBPTT

PES High-Level Overview

PES splits the computation graph into a series of truncated unrolls
Performs an ES-style parameter update after each unroll

Y

T

Eliminates bias from the truncations by accumulating correction terms
over the full sequence of unrolls

e Allows for rapid parameter updates
e Inherits useful properties from ES:

o Has low memory usage, does not require storing states for backprop
o Smooths the loss surface, which is useful for unrolled computations

PES Derivation: Notation Shift

Li(81;0) La(s2;0) L3(ss;0)

b

. 81 — 82 —>83 — e0e

A N
o 6 6

Unrolled computation graphs depend on shared
parameters @ at every timestep

Notation
Shift

-

L1(61) L(61,05) Ls3(0:,02,05)

toobo

cee —p 81 —_— 82 —»83 —_— e

[
0, 6, 65

In order to account for how the applications of 0
contribute to the overall gradient, Vo L(0) we
use subscripts to distinguish between
applications of @ at different steps, V¢t : 8, = 6

We drop the dependence on Ss; and explicitly
include the dependence on each 8,
We also define © = (6y,...,07)"

Then we can write L;(61,...,0;) = L;(©)

PES Derivation @

dL(O) < OL(O) OL(©)
) Z dvec (0)

—I®1")

PES Derivation €@

de(O@) _ Z 8L(@) 88\/245(@(2)) ~ gPES _ (I ® 1T) E. [i vec (e) L (@ + 6)] Apply ES

o2

—(I®1")

PES Derivation @

dL(©) _ ZT: OL(©) OL(©)
dvec (0)

= (I®1")

de

o2

1
~ g™ =(1I® 1T) E. [— vec (€) L (© + e)] Apply ES

R I A
T 1 2
@:[0,]= o) 6%

eél) 0§2)

PES Derivation @

T
AL(©) < IL(O) r OLO) s e T2
i il S =(I®1 ~ = (I®1")E: |— L(©
de 723:1 00, (e)3vec(®) g <®) €lo2? vec(€) L (® +¢€)| | Apply ES
. T
i D o vee(®) = [0V oV o) 0P o o]
7] 0 0 -
0 — elT _ 0%1) 0%2) OL(®) roL(e) oL(®) aIL©) 0L(O) JL©) IL®O)]'
- 2 - %1) %2) dvec(©) L T S Y] S V] S A 1) S A T
0 _
3 057 0O I®1T:10®[1 . 1]:1 1 1000
0 1 000111

PES Derivation @

T
dL(©) OL(©) +. OL(O©) " T 1
=1 T
- T
o7 PIONIPCY vee(©) = [of” o5 o o o of?)]
o BlT B 0%1) 0%2) OL(©) [oL(©) 0L(O) OL©) OLO) 8L(e) BL(G)}T
- 2 - %1) %2) dvec(©) R)) S IV I VIS S
0 _
3 b7 0 te17= [} Qepn 1 [t 2 1000
@1 =y 1| ®l “0oo0 111
OL(O) | L(©) | OL(O) 8L(O) 8L(O) 8L(O)
o one [T Tar) e e e ZTI _aw(e)
ovec(©) | are) L OL(©) | OL(®) 8L(O) 8L(O) 8L(O) o’ de
86> 865> 865> 86> 865> 865>
oL(®) oL(®) oL(©)

906, 964 9063

PES Derivation @

e PES decomposes into a sum of sequential gradient estimates.
o Below, € is a matrix whose rows are per-timestep perturbations €.~

&7 — LE_ [T 1) vec(€) L(O + €]

o2
1 Wi T

— ?Ee (Z eT> Z Li(© +€)
| B\NG=ll! t=1

1

A
— ?Ee thLt(Bl +€1,...,0; —|—€t)
| t=1

e We obtain unbiased gradient estimates from partial unrolls by: 1) not resetting the particles between
unrolls, and 2) accumulating the perturbations each particle has experienced over multiple unrolls

PES Derivation @

e PES decomposes into a sum of sequential gradient estimates.
o Below, € is a matrix whose rows are per-timestep perturbations €.~

&7 — LE_ [T 1) vec(€) L(O + €]
1 § T T
- ?Ee (Z eT> Z Li(© +€)

T
= — K ZStLt(al +€1,...,0: +€)
[#=1

e We obtain unbiased gradient estimates from partial unrolls by: 1) not resetting the particles between
unrolls, and 2) accumulating the perturbations each particle has experienced over multiple unrolls

Monte Carlo PES Estimate PES Estimate w/ Antithetic Sampling
§ i i ~PES-A (4) (i)
ZZ@PL L Ote’) g WZZ GRATEE SN
=1 t=1

0,0, - €D, 0, - eff)))

ES & PES Algorithms

Algorithm 1 Truncated Evolution Strategies (ES) applied

Algorithm 2 Persistent evolution strategies (PES). Differ-
to partial unrolls of a computation graph.

ences from ES are highlighted in purple.

Input: sy, initial state
K, truncation length for partial unrolls
N, number of particles
o, standard deviation of perturbations
a, learning rate for ES optimization
Initialize s = s

repeat
g o0
fori=1,...,N do
; draw from N'(0,02I) i odd
6(2) = (i—1) .
—e\'” 1 even
I:&? < unroll(s, 8 + €? | K)

~ES , AES) 7 (@
g <g —I-e(’)Lg?

end for
~ES 1 AES
g < No29

s < unroll(s, 8, K)
0« 0 — ag™®

Input: sy, initial state
K, truncation length for partial unrolls
N, number of particles
o, standard deviation of perturbations
o, learning rate for PES optimization
Initialize s() = s fori € {1,..., N}
Initialize £ « O fori € {1,...,N}
repeat
G5 0
for:=1,...,Ndo
: draw from A (0,02I) iodd
e®) = { (i—1) :
—€ i even
s, 29 « unroll(s®, 0 + €9, K)
E(i) e g(i) +e®
gPES . gPES e é(z)ng()
end for

~PES 1 A~PES
g < No29

0+ 60— ag™>

Example Implementation in JAX

def pes_grad(key, xs, pert_accum, theta, t0, T, K, sigma, N):
Generate antithetic perturbations
pos_perts = jax.random.normal(key, (N//2, theta.shapel@])) x sigma # Antithetic positives
neg_perts = —pos_perts # Antithetic negatives
perts = jnp.concatenate([pos_perts, neg_perts], axis=0)

Unroll the inner problem for K steps using the antithetic perturbations of theta
L, xs = jax.vmap(unroll, in_axes=(0,0,None,None,None))(xs, theta + perts, t0, T, K)
Add the perturbations from this unroll to the perturbation accumulators
pert_accum = pert_accum + perts

Compute the PES gradient estimate

theta_grad = jnp.mean(pert_accum * L.reshape(-1, 1) / (sigma*x2), axis=0)

return theta_grad, xs, pert_accum

PES Variance

e The variance of the PES gradient estimate depends on the correlation between gradients at each unroll

1. If we assume that the 2. If we assume that the
gradients for each unroll gradients from each unroll
are i.i.d., then variance are identical, then variance 3. Real data exhibits
scales linearly in the scales as O(cons + characteristics of both
number of unrolls cons/#unrolls) Synthetic scenarios

10° —— N=10 —e— N=100 103 HE= N=10 —— N=100 103 LT N=10 —e— N=100
105 —e— N=30 —e— N=1000 —e— N=30 —e— N=1000 —e— N=30 —— N=1000
102 w ” _/

10° 10! 102 103 10° 10! 102 103 10° 10! 102 103
Unrolls # Unrolls # Unrolls

=
o
N

Variance
= =
L B
Variance
=
=
1
}
1
Variance
[=]
Q

=
o
-
=
o
o
=
o
o

10°

(a) Random sequence (b) Single character repeated (c) Real PTB sequence

PES Experiments

e Our experiments aim to demonstrate that:
1. PES is unbiased, allowing it to converge to correct solutions that are not found by
TBPTT or truncated ES
2. Loss surface smoothing induced by PES is beneficial for meta-optimization,
overcoming erratic meta-loss surfaces
3. PES can target non-differentiable objectives such as validation accuracy

e We apply PES to several illustrative scenarios:
1. Optimizing hyperparameters
2. Meta-training a learned optimizer
3. Learning a policy for continuous control

Experiments: Influence Balancing

e Synthetic task introduced by Tallec et al. 101l |— TBPTT 1 —_ Plg
(2017), des?gned to have arbitrarily long-term —— TBPTT 10 —— UORO
dependencies —— TBPTTF100 ---- RTRL

e Learn a scalar parameter that has a positive
influence in the short term but a negative
influence in the long term

e Truncated algorithms like TBPTT fail as the
parameter explodes in the wrong direction 162

e PES performs nearly identically to exact RTRL
given sufficiently many particles to reduce
variance 107+

103

Loss

0 1000 2000 3000
Ilteration

* Note that this is intended to show that PES is unbiased; it is not a compute-time comparison

Experiments: LR Optimization for 2D Regression

e \We defined a toy 2D regression problem that has one global minimum, but many /ocal

minima to which truncated gradient methods could converge

e \We learn a linearly-decaying LR schedule parameterized by: «; = (1 — %)600 + %e"l

Meta-Loss Surface

— 10%
2500
g)
o 5 2000
= k] —— TBPTT
9 -8 1500 | —— UORO
_E % 1000 —— RTRL
- 103 = e
s PES
500
10# 103 104 10°
-4 -2 0 2 4 Inner Iterations

Initial Log LR

Experiments: MNIST Learning Rate Schedule

e Meta-learning a learning rate schedule for an MLP (784-100-100-10) on MNIST
e Here, the full inner-problem length is T=5000, and we run ES and PES with truncation
lengths K € {10,100}

Targeting Training Loss Targeting Validation Accuracy

8.8 -0.98
0

o 8.0 5 PES K=100 096
© o -1

= =

= = 0.94

-2

0.92

5.6 -3 0.90

Experiments: Tuning Many Hyperparameters

e 4-layer MLP trained on MNIST, total inner 5 400
problem length T=1000 > 380 —— Random
G 360 ES
e Tuning separate LR and momentum for each a 340 — PES
parameter block (weight matrix and bias vector) Orb 320
o 20 hyperparameters total = 300
= 280
e Random search, truncated ES, and PES are % 260
run w/ four diff. random seeds @ 240

_ 0 200K 400K 600K 800K 1M
e ES performs poorly compared to RS, because it Total Compute

does not move in the correct direction

Training Learned Optimizers

We meta-train an MLP-based learned
optimizer as described in Metz et al. (2019)

This optimizer is used to train a ftwo
hidden-layer, 128 unit, MLP on CIFAR-10

Due to PES's unbiased nature, PES achieves
both lower losses, and is more consistent
across random initializations of the learned
optimizer

g
o

Meta-Loss
(Average Cross Entropy)
N N
o U

e
6]

0

20k 40k 60k 80k
Meta-Training lterations

100k

Learning a Policy for Continuous Control

PES can be used to frain a policy for a
continuous control problem using partial unrolls

We found that PES is more efficient than ES
applied to full episodes, while truncated ES fails
due to bias

400
350
300

© 250

2 200
(O]

o 150 |

100
50

Swimmer-v2

- —— ESK=1000
~ —— ESK=100
. PESK=100

0
0 100K 200K 300K 400K 500K

Total Environment Steps

Conclusion

e Algorithmically, PES is an easy-fo-implement modification of ES
e Provides unbiased gradient estimates from partial unrolls

e Inherits useful characteristics from ES:
o Parallelizability
o Works with arbitrary non-differentiable functions
o Smooths the meta-loss surface

e PES has tractable compute and memory cost

e Can be applied to various unrolled problems (hyperopt, learned optimizers, RL)

Thank you!

