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Problem Setup: Unrolled Computation Graphs

e Consider a dynamical system that evolves according to: §; = f(st_l, It 0)
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Objective: L(O) = Z?:l Lt(St; Ht)

e Problem: Most approaches suffer from fruncation bias, high-variance gradients, slow
updates, or high memory usage



Pathological Meta-Loss Surfaces and ES

e Another issue: long unrolls can lead to chaotic or poorly conditioned loss landscapes
o This is especially common for unrolled optimization
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e Consider optimizing a Gaussian-smoothed meta-objective Eg_\r g ;21 [L(9)]

e Evolution strategies (ES) is a method for estimating a descent direction using

stochastic finite differences:
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Pros & Cons of ES

e ES optimizes a Gaussian-smoothed loss surface

e Does not use backprop, so does not require storing states in memory

e Can optimize arbitrary black-box functions, e.g., non-differentiable objectives like
accuracy rather than loss

e Is highly scalable on parallel compute, and can have low variance with antithetic
sampling

e In principle, using ES on full unrolls of the computation graph would work well
o Problem: we have to do a full unroll for each parameter update, which is slow

e |In practice, ES is applied to truncated unrolls
o Problem: Suffers from truncation bias similarly to TBPTT



PES High-Level Overview

PES splits the computation graph into a series of truncated unrolls
Performs an ES-style parameter update after each unroll
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Eliminates bias from the truncations by accumulating correction terms
over the full sequence of unrolls

e Allows for rapid parameter updates
e Inherits useful properties from ES:

o Has low memory usage, does not require storing states for backprop
o Smooths the loss surface, which is useful for unrolled computations



PES Derivation: Notation Shift
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In order to account for how the applications of 0
contribute to the overall gradient, Vo L(0) we
use subscripts to distinguish between
applications of @ at different steps, V¢t : 8, = 6

We drop the dependence on Ss; and explicitly
include the dependence on each 8,
We also define © = (6y,...,07)"

Then we can write L;(61,...,0;) = L;(©)




PES Derivation @
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PES Derivation €@
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PES Derivation @
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PES Derivation @
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PES Derivation @
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PES Derivation @

e PES decomposes into a sum of sequential gradient estimates.
o Below, € is a matrix whose rows are per-timestep perturbations €.~
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e We obtain unbiased gradient estimates from partial unrolls by: 1) not resetting the particles between
unrolls, and 2) accumulating the perturbations each particle has experienced over multiple unrolls



PES Derivation @
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e We obtain unbiased gradient estimates from partial unrolls by: 1) not resetting the particles between
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ES & PES Algorithms

Algorithm 1 Truncated Evolution Strategies (ES) applied

Algorithm 2 Persistent evolution strategies (PES). Differ-
to partial unrolls of a computation graph.

ences from ES are highlighted in purple.

Input: sy, initial state
K, truncation length for partial unrolls
N, number of particles
o, standard deviation of perturbations
a, learning rate for ES optimization
Initialize s = s

repeat
g o0
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Input: sy, initial state
K, truncation length for partial unrolls
N, number of particles
o, standard deviation of perturbations
o, learning rate for PES optimization
Initialize s() = s fori € {1,..., N}
Initialize £ « O fori € {1,...,N}
repeat
G5 0
for:=1,...,Ndo
: draw from A (0,02I)  iodd
e®) = { (i—1) :
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Example Implementation in JAX

def pes_grad(key, xs, pert_accum, theta, t0, T, K, sigma, N):
# Generate antithetic perturbations
pos_perts = jax.random.normal(key, (N//2, theta.shapel@])) x sigma # Antithetic positives
neg_perts = —pos_perts # Antithetic negatives
perts = jnp.concatenate([pos_perts, neg_perts], axis=0)

# Unroll the inner problem for K steps using the antithetic perturbations of theta
L, xs = jax.vmap(unroll, in_axes=(0,0,None,None,None))(xs, theta + perts, t0, T, K)
# Add the perturbations from this unroll to the perturbation accumulators
pert_accum = pert_accum + perts

# Compute the PES gradient estimate

theta_grad = jnp.mean(pert_accum * L.reshape(-1, 1) / (sigma*x2), axis=0)

return theta_grad, xs, pert_accum




PES Variance

e The variance of the PES gradient estimate depends on the correlation between gradients at each unroll

1. If we assume that the 2. If we assume that the
gradients for each unroll gradients from each unroll
are i.i.d., then variance are identical, then variance 3. Real data exhibits
scales linearly in the scales as O(cons + characteristics of both
number of unrolls cons/#unrolls) Synthetic scenarios
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PES Experiments

e Our experiments aim to demonstrate that:
1. PES is unbiased, allowing it to converge to correct solutions that are not found by
TBPTT or truncated ES
2. Loss surface smoothing induced by PES is beneficial for meta-optimization,
overcoming erratic meta-loss surfaces
3. PES can target non-differentiable objectives such as validation accuracy

e We apply PES to several illustrative scenarios:
1. Optimizing hyperparameters
2. Meta-training a learned optimizer
3. Learning a policy for continuous control



Experiments: Influence Balancing

e Synthetic task introduced by Tallec et al. 101l |— TBPTT 1 —_ Plg
(2017), des?gned to have arbitrarily long-term —— TBPTT 10 —— UORO
dependencies —— TBPTTF100 ---- RTRL

e Learn a scalar parameter that has a positive
influence in the short term but a negative
influence in the long term

e Truncated algorithms like TBPTT fail as the
parameter explodes in the wrong direction 162

e PES performs nearly identically to exact RTRL
given sufficiently many particles to reduce
variance 107+

103
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* Note that this is intended to show that PES is unbiased; it is not a compute-time comparison



Experiments: LR Optimization for 2D Regression

e \We defined a toy 2D regression problem that has one global minimum, but many /ocal

minima to which truncated gradient methods could converge

e \We learn a linearly-decaying LR schedule parameterized by: «; = (1 — %)600 + %e"l
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Experiments: MNIST Learning Rate Schedule

e Meta-learning a learning rate schedule for an MLP (784-100-100-10) on MNIST
e Here, the full inner-problem length is T=5000, and we run ES and PES with truncation
lengths K € {10,100}
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Experiments: Tuning Many Hyperparameters

e 4-layer MLP trained on MNIST, total inner 5 400
problem length T=1000 > 380 —— Random
G 360 ES
e Tuning separate LR and momentum for each a 340 — PES
parameter block (weight matrix and bias vector) Orb 320
o 20 hyperparameters total = 300
= 280
e Random search, truncated ES, and PES are % 260
run w/ four diff. random seeds @ 240
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e ES performs poorly compared to RS, because it Total Compute

does not move in the correct direction



Training Learned Optimizers

We meta-train an MLP-based learned
optimizer as described in Metz et al. (2019)

This optimizer is used to train a ftwo
hidden-layer, 128 unit, MLP on CIFAR-10

Due to PES's unbiased nature, PES achieves
both lower losses, and is more consistent
across random initializations of the learned
optimizer
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Learning a Policy for Continuous Control

PES can be used to frain a policy for a
continuous control problem using partial unrolls

We found that PES is more efficient than ES
applied to full episodes, while truncated ES fails
due to bias
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Conclusion

e Algorithmically, PES is an easy-fo-implement modification of ES
e Provides unbiased gradient estimates from partial unrolls

e Inherits useful characteristics from ES:
o Parallelizability
o Works with arbitrary non-differentiable functions
o Smooths the meta-loss surface

e PES has tractable compute and memory cost

e Can be applied to various unrolled problems (hyperopt, learned optimizers, RL)
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