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Optimization Over Inputs
● Several tasks in machine learning require optimization over inputs

○ Finding a latent representation that decodes to an image matching a target:
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● Problem: Optimizing over inputs is costly, since each gradient step requires a forward + 
backward pass through the network

● This paper combines the input optimization with fixpoint iteration of DEQs
● Goal: Speed up training of networks that involve such “bilevel” structure

Gurumurthy et al., “Joint Inference and Input Optimization in DEQs” NeurIPS 2021.



DEQ Recap: Weight-Tied, Input-Injected Layers

...

● Such architectures were studied in the 
1990s (as “convergent RNNs”)

The “effective depth” is given 
by the number of iterations of 
the single layer 

● RNNs are the most well-known examples of 
such weight-tied models, although typically 
they have different inputs at each step 
rather than the same input re-injected

● Recently, weight-tied models have made a 
resurgence, e.g., universal transformers

Weight-Tied, Input-Injected Architecture



DEQ Recap: Taking the Number of Layers to Infinity

● If we take the number of layers to infinity, then under some conditions we converge to a fixpoint

● Main idea behind deep equilibrium models (DEQs):

● Define the output of a layer to be the solution to the fixpoint equation

● Naive approach:

● Forward: explicitly unroll the computation graph corresponding to repeated applications 
of the layer

● Backward: Backpropagate through the unroll.
○ Requires storage of the intermediate z’s, so memory scales linearly with the effective 

depth k

● Forward pass: arbitrary fixpoint solver to find z_star
● Backward pass: implicit differentiation

○ Can be done in different ways, either with another fixpoint solve, or with Neumann series
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Optimization Over Inputs
● They combine the update for the input x with the fixpoint update for z as:

● Computing the inverse Jacobian is like the standard backward pass of a DEQ, where we have to 
find the JVP:

Computing the inverse Jacobian is expensive

Another fixpoint iteration

Gurumurthy et al., “Joint Inference and Input Optimization in DEQs” NeurIPS 2021.



Optimization Over Inputs

● So, they further propose to combine this fixpoint iteration over mu into the update:

They interpret this as an “augmented” DEQ network

Gurumurthy et al., “Joint Inference and Input Optimization in DEQs” NeurIPS 2021.



Optimization Over Inputs

Gurumurthy et al., “Joint Inference and Input Optimization in DEQs” NeurIPS 2021.



Experiment Overview

● Experiments
1. Training DEQ-based generative models while optimizing over latent codes
2. Training models for inverse problems such as denoising or inpainting
3. Adversarial training of implicit models
4. Gradient-based meta-learning

● Claims
○ Simultaneous input optimization and DEQ training is faster than a naive inner/outer 

optimization
■ 3.5-9x speedup for generative DEQ networks
■ 3x speedup in adversarial training of DEQs
■ 2.5-3x speedup for meta-learning

Gurumurthy et al., “Joint Inference and Input Optimization in DEQs” NeurIPS 2021.



Generative Modeling
● Learning a decoder-only generative model — computes 

latents by directly minimizing a reconstruction loss.

Gurumurthy et al., “Joint Inference and Input Optimization in DEQs” NeurIPS 2021.



Adversarial Training
● JIIO allows for training implicit models that are similarly robust to models trained with PGD, 

more quickly than PGD
● Train MDEQ on CIFAR10 and MNIST using adv training with epsilon=1.

Gurumurthy et al., “Joint Inference and Input Optimization in DEQs” NeurIPS 2021.



Drawbacks

● Requires way more fixpoint iterations to converge (50-100) vs a standard DEQ (10-20)
○ Uses more memory depending on which fixpoint solver you use (e.g., Anderson or 

Broyden, etc.)

Gurumurthy et al., “Joint Inference and Input Optimization in DEQs” NeurIPS 2021.
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Implitictness

Huang et al., “Implicit Layers for Implicit Representations” NeurIPS 2021.

● Two different types of “implicitness”
○ Implicit representations: continuous representations of high-frequency data like 

images, audio, or video using a low-dimensional neural net
○ Implicit layers: effectively “infinite-depth” models whose forward pass is 

computed by solving a fixpoint equation

● Plot twist: this paper applies implicit layers to learn implicit representations

● They define simple implicit (single-repeated-layer) variants of the SIREN and 
Multiplicative Filter Networks (MFN) models
○ And they apply their variants (iSIREN and iMFN) to several domains
○ Comparing against explicit versions of these models



Training Tricks

Huang et al., “Implicit Layers for Implicit Representations” NeurIPS 2021.



Amortized Fixpoint Iterations

● Implicit representations are typically 
trained in full-batch mode (e.g., operating 
on all the pixels in an input image 
simultaneously, where each pixel position 
is a separate input)

● The fixpoint z from one forward pass will 
probably be similar to the fixpoint in the 
next forward pass

○ Because the parameters don’t change 
much in each step

● Side note: amortizing the 
forward/backward passes may also be 
useful for time series, or when 
subsequent inputs are similar to each 
other

○ Diffusion models, video frames, etc.

Huang et al., “Implicit Layers for Implicit Representations” NeurIPS 2021.



Faster Backward Pass: Truncated Neumann Iterations

● Truncated Neumann series iterations to 
compute the implicit gradient work well

● This was also found by several other 
papers

Huang et al., “Implicit Layers for Implicit Representations” NeurIPS 2021.



Image Representation

Huang et al., “Implicit Layers for Implicit Representations” NeurIPS 2021.



Image Representation

●

Huang et al., “Implicit Layers for Implicit Representations” NeurIPS 2021.



Image Generalization
● Train on only 25% of the pixels from each image and evaluate PSNR on an unobserved 

25% portion of the image
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Audio Representations

Huang et al., “Implicit Layers for Implicit Representations” NeurIPS 2021.



Video Representations

Huang et al., “Implicit Layers for Implicit Representations” NeurIPS 2021.



3D Geometry Representations

Huang et al., “Implicit Layers for Implicit Representations” NeurIPS 2021.
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