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Saddle Point Optimization

e Goal: Solve an optimization problem of the form

min max f(x
min yeRdf( ,Y)

e Where do we encounter such optimization problems?
o Training Generative Adversarial Networks (GANS)

m(}n max V(G,D) = Eyppa@log D(z)] + E, ) llog(l — D(G(2)))]

o Game theory: “In a two-player zero sum game defined on a continuous space, the
equilibrium point is a saddle point.”



Saddle Point Optimization

e An optimal saddle point (x*,y") is characterized by:

@ f(:c*, y) < f(:l?*, y*> We’re at a max in y (changing y only

gives smaller values of f)

* % «\ We're at a min in x (changing x only
@ f(:L’ 'Y ) < f<x’y ) gives larger values of f)

e The function f is not necessarily convex in x or concave in y

- We only look for local saddle points, where the conditions hold in a
local neighborhood around (z*, 3y*)



Conditions for Local Optimality

° (:L‘*, y*) is a locally optimal saddle point on Iq if and only If.

V" y") =0 Vel (@, y) =0 V[, y") <0

& There is no negative There is no positive curvature

We’re at a critical/stationary point , , , , ) )
curvature in the x direction in the y direction



Simultaneous Gradient Ascent/Descent

e Classic method: simultaneous gradient ascent/descent:
[$t+1:| _ [xt] o [—fo@t,yt)]
Yt+1 Yt Vyf(fvt, Z/t)

e This method is stable at some undesired stationary points
o Undesired = where the function is not a local minimum in x and a maximum in y



Stability

A stable stationary point of an optimization dynamic is a point to which we can
converge with non-vanishing probability

We would hope that only the solution of our saddle point problem are the stable
stationary points of our optimization scheme

Minimization Saddle Point Opt.
2
Local optimality V2 f(2) = 0 Vaf(@,y) =0
condition ’ Vo f(z,y) <0
Stability 2 ~Vif(z,y) =V f(z,y)
\Y% 0 A
condition oS (@) Vi f(x,y) Vi flz,y)

mm) Gradient dynamics may introduce
additional stable points that are not
locally optimal saddle points



Example: GD Converges to Undesired Stable Points
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Curvature Exploitation for Saddle Point Optimization (CESP)

e How can we escape from undesired stable points?
e If we have not yet found a point that is a minimum in x, V2f(z,y) # 0 so Vf(z,y)
has at least one negative eigenvalue — move along the most negative eigendirection

HON sLsgn(vy Vof(z))ve if Ag <O This means that V2 f(x,y) # 0
‘ 0 otherwise
e %sgn(vgv(pf(z))v,,, if Ap >0 This means that ijf(x, y) £ 0
0 otherwise
Vz = (Vg_)/ V£+))

e Modifies simultaneous gradient descent/ascent update with extreme curvature vector:

sl =l e[S+ L)
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Comparison of the trajectories of GD and CESP

The right plot shows the vector field of the extreme curvature. The curvature in the
x-dimension is constant and positive, and therefore the extreme curvature is always zero.
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CESP convergence
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Curvature Exploitation for Linear-Transformed Steps

e They also apply CESP to linearly-transformed gradient steps (in particular Adagrad)

Original linearly-transformed update CESP linearly-transformed update
Ln+1 T —fo@?, y)] Ln41 Ln _vxf<$7 y) Uy
— +nA -~ +nA +
[ynJrl] [yn] i [ Vyf(x, y) Yn+1 Yn e Vyf(ilj, y) Uy
A 0] . - » -
where A = [ 0 B] Is a symmetric, where A must be positive definite
block-diagonal matrix

e The set of locally optimal saddle points defined by the simultaneous gradient
ascent/descent updates and the set of stable points of the CESP linearly-transformed
update are the same.



Standard GAN Training

e Train a small GAN on MNIST [|->[|->[| H_>[|_>[|
e Compare Adagrad to Adagrad w/ curvature exploitation 10 100 100 1o
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mm) Both methods converge



CESP Guarantees

Minimization
GD

stationary points

Lsta le points = local minima

eassms eassse eoEssse eoeesse =)

Saddle Point Optimization
GD

stationary points

stable points # locally I

oetimal saddles

Saddle Point Optimization
CESP

stationary points
= stable points
= locally optimal saddles

e CESP provably shrinks the set of stable points to the set of locally optimal solutions

‘ Can only converge to locally optimal saddle points



Implementation with Hessian-Vector Products

e Storing and computing the Hessian in high dimensions is intractable
o Need an efficient method to extract the extreme curvature directions
e Common approach to obtaining the eigenvector corresponding to the largest absolute
eigenvalue of V2f(x,y) is to run power iterations:

vy = (I - ﬂviﬂwy y))v

Can be computed without finding the Hessian, via Hessian-vector products
e Still expensive: How often do we have to compute the extreme curvature?



Summary

e Gradient-based optimization is used for both minimization and saddle-point problems
e Problem: The presence of undesired stable stationary points that are not local optima
of the saddle point problem (i.e., minimax problem)

e R R

e Approach: Exploit curvature information to escape from these undesired stationary

points
) = e e | 1

e Potentially: a way to improve GAN training






