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Motivation & Summary

• Invertible neural networks (INNs) have many applications:
training generative models w/ exact likelihoods, increasing
posterior flexibility in VAEs, computing memory-efficient
gradients, solving inverse problems, and analyzing robustness.

•These applications rely on the assumption that theoretical
invertibility carries through to the numerical instantiation.

•We show that common INN architectures suffer from
exploding inverses & can become numerically non-invertible.

•We provide ways to mitigate this instability: 1) enforcing
global stability using Lipschitz-constrained INN architectures
or 2) regularization to enforce local stability.

Theory

Additive Affine

F (x)I1 = xI1 F (x)I1 = xI1
F (x)I2 = xI2 + t(xI1) F (x)I2 = xI2 � g(s(xI1)) + t(xI1)

•Computations are carried out with limited precision → error
is always introduced in both the forward and inverse passes.

• Instability in either pass will aggravate this imprecision

● Small change in input → 
small change in output

● Small change in output → 
small change in input
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•There is a global bound on Lip(F ) and Lip(F−1) for additive
blocks, but only local bounds for affine blocks.

Controlling Global Stability
•Additive: Can use spectral norm to control the Lip constant

•Affine: Can increase stability by avoiding scaling by small
values. But still no global Lipschitz bound.

Theory (Contd.)

Controlling Local Stability
•Use penalty on the Jacobian to enforce local stability
•We propose using an efficient approximation, Bi-Directional Finite

Differences Regularization
•Normalizing flow (NF) objective has a stabilizing effect:
•Prior: pushes output to have small norm, improving forward stability.
• Log-determinant: increases all singular values, w/ stronger effect on

small SVs, improving inverse stability.

INN Instability on OOD Data

•Global invertibility is needed to apply INNs to OOD data.

• INNs can become numerically non-invertible even when
trained with NF (despite encouraging local stability)
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Dataset % Inf Err % Inf Err

CIFAR-10 0 6.3e-5 0 2.9e-2

Uniform 100 - 0 1.7e-2
Gaussian 100 - 0 7.2e-3

SVHN 0 5.5e-5 0 7.3e-2
Texture 37.0 7.8e-2 0 2.0e-2
Places 24.9 9.9e-2 0 2.9e-2
tinyIM 38.9 1.6e-1 0 3.5e-2

•Thus, likelihoods computed by Glow are not meaningful

INN Instability in the Data Distribution

•By optimizing within the
dequantization distribution of a
datapoint we are able to find
regions that are poorly
reconstructed by the model.

•Start with x and use Projected
Gradient Descent to find a
perturbed example x ′ with high
reconstruction error:

arg max
||x ′−x ||∞≤ε

||x ′ − F−1(F (x ′))||2.

Supervised Learning w/ Memory-Efficient Gradients
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• INNs enable memory-efficient
training by recomputing
activations in the backward pass
rather than storing them in the
forward pass

•Additive and affine INNs achieve
similar test accuracy on
CIFAR-10, but differ in stability

•While additive is stable, affine
gives infinite or nan gradients
after a few epochs

Unregularized Regularized

•Exploding inverses on a 2D regression task.

• In contrast to NFs, there is no default mechanism to avoid
unstable inverses in supervised learning

•Solution: use finite-differences (FD) regularization or add the
normalizing flow (NF) objective with small weighting

Model Reg. Inv? Test Acc Recons. Err. Min SV Max SV

Additive
None 3 89.73 4.3e-2 6.1e-2 4.4e+3
FD 3 89.71 1.1e-3 8.7e-2 2.6e+1
NF 3 89.52 9.9e-4 3.9e-2 6.6e+1

Affine
None 7 89.07 Inf 1.9e-12 1.7e+3
FD 3 89.47 9.6e-4 9.6e-2 1.5e+1
NF 3 89.71 1.3e-3 3.5e-2 7.7e+1

• Instability in the affine model arises from the inverse
mapping, as the min SV is 1.9e-12.

•Both FD and NF regularizers stabilize the model without
harming accuracy


