Adversarial Distillation of
Bayesian Neural Network Posteriors

Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger Grosse, Richard Zemel

ICML 2018

Slides by: Paul Vicol

7 VECTOR
INSTITUTE

Motivation: Why do we need uncertainty?

Training

cat

dog

- Try to extrapolate

- Indicate that the example is .t d.
out-of-distribution ca 9

Test

Motivation: Why do we need uncertainty?

Safety-critical systems: want to have high confidence
before taking action; otherwise defer to a human

Medical applications: uncertainty is critical in
automatic diagnosis systems

Using uncertainty to understand systems

O Abasketball player’s offensive skill can be judged/estimated by
the amount of uncertainty he can induce in his movements.
Here, more uncertainty = better!

Motivation: Why do we need uncertainty?

Noisy data

(aka, aleatoric uncertainty) Predictive uncertainty

Model uncertainty
(aka, epistemic uncertainty)

e Bayesian methods provide a principled way to capture model uncertainty through the
posterior distribution p(6|D) over model parameters
Can reason about how different models from the posterior behave as a group
Real-world applications of Bayesian methods (e.g., BNNs) include:
o Efficient exploration in RL (Vlassis et al., 2012)
o Active learning (Settles, 2010)
o Defense against adversarial attacks (Feinman et al., 2017)

Standard Neural Net Bayesian Neural Net

O I b f
\Gg\/&
Learn the parameters) by minimizing a e Parameters represented by distributions
loss function L e Find p(6|D) through VI or MCMC methods
0" = arg min 5(97 D) e Make predictions by integrating over ()
0

Depending on the loss function, §* can be
the MLE or MAP point-estimate plylz, D) = /p@‘@’ z)p(0|D)d6
Make predictions by computing

y = for()

Motivation - Conventional Training == Approximation

Minimizing: Is Equivalent To:
NLL (no regularization) Maximum likelihood estimation
1 & =) MLE
N;—logp(yi|xi,9) 0 — arg mgxxp(D\@)
NLL (+ L? regularization) MAP estimation with a Gaussian prior

oMAY — arg m@axp(@ﬂ?)

N

1

< 2 — logp(uilz:, 0) + All6]]3
=1 where 0 ~ N (0, o%)

Uncertainty Measures

Predictive Entropy

Hole, D) = = 3 ply = o,) ogply = i,) H [

Max entropy

Variation Ratios (VR) 0.9

VR|[z] = 1 — max p(y|z, D) I VR=01
y

Bayesian Active Learning by Disagreement (BALD)
]I(yv 9|x7 D) — H(y|$, D) _ IE9Np(9|'D) [H(ylib', 9)]

The model is But individual settings of the

Large when... uncertain abouty... parameters are confident about y

Two Ways to Compute the Posterior

Variational Inference (VI MCMC Methods
® Introduce a parametric distribution %(6’) ® In the limit, MCMC methods yield samples
and minimize the KL divergence: from the true posterior p(0|D)

e No assumption of factorizing posterior, but

= in KL|q4(6 0\D
¢ argmq;n [%(Ilp@ID)] are not scalable to large datasets, because

- VI can only produce samples from the they require computation over the whole
approximate posterior dataset

- Most VI approaches make strong e SGLD and other sg-MCMC methods
assumptions about the structure of the address the computational cost by
posterior: assume that the posterior operating on mini-batches

distribution factorizes as the product of
univariate Gaussians
- (Uses ~2x memory to store a mean
and variance for each parameter)

Stochastic Gradient Langevin Dynamics (SGLD)

SGLD bridges optimization and Bayesian learning

Transitions from optimization fo posterior sampling

— T

Mini Batch GD (SGD) SGLD
t n t__ G_t t E - t .t nt t
Aet :% (V logp(et) +%;Vlogp(yf|x§,9t)> AG" = 9 (v logp(e) + n iz:;v}ng(yilxiae)) +1
n' ~N(0,¢€)

e Obtain samples @ ~ p(@ﬂ)) by adding Gaussian noise to SGD updates
e Save the iterates {Ht} while training the model - simultaneous training & posterior
sampling

Problems with SGLD

(91 - p(y|m,91)

92 - p(y|x,92)

E H

(9[(— p(y|x,9K)

Problems with SGLD

r

(91 - p(y|$791)

92 - p(y|x,92)

Wastes memory <

Related Work: Bayesian Dark Knowledge

e Train a student network to approximate the posterior predictive distribution of
the teacher (= Monte Carlo ensemble)

e Denote the prediction of the teacher by [E,, g py[p(y|z, 8)]

Goal: minimize KL[E,,) [p(y|z,0)]||S(y|z, w)]

10 SGLD
10 SGLD-DISTILLED (student net: 2-10-2) 10— SGLD-DISTILLED (student net: 2 -100-2) 10 SGLD-DISTILLED (student net: 2-10-10-2)
5
5| 5 5K
i~ 0
0 % 0 = 0
-5 5 s -
10 -10 -10 -10
210 -5 0 S 10 210 = 0 5 10 2 5 10 210 -5 0 5 10
. g J

~
SGLD predictive distribution Various student network architectures

Related Work: Bayesian Dark Knowledge

e Bayesian Dark Knowledge distills the posterior predictive produced by SGLD

into a single network
+ Saves computation time (no integrating over posterior samples)
+ Saves storage (no need to keep posterior samples around)
- The posterior is lost at test-time

- Cannot compute quantities like BALD:
Iy, 6], D) = H (|, D) ~ Rgpioro)}H (vl 0)
Requires access to the posterior distribution

e Our approach distills the posterior distribution such that we can draw samples from it at
test-time

Distilling Posterior Samples using a GAN

Model parameters saved
0 ~ p(9|D) during training

GAN

— | Generator

T

More samples = more storage

Fixed storage cost for any # samples

Adversarial Posterior Distillation (APD)

Distillation

SGLD |P(y|z,D) Zp y|z,0"),0" ~ p(6|D)
Inference

APD (Ours) |p(y|z, D) Zp ylz, G(2H), 28 ~ N(0,1)

Offline and Online APD

Offline APD Online APD

N

} GAN
> | GAN } GAN
J

e Two distinct stages: e Alternate between posterior sampling

1. Obtain posterior samples Ht}?_l and GAN training
2. Train a GAN on those samples

Baseline: MC Dropout

N

AN

Monte Carlo dropout = applying dropout
at test-time to obtain predictions made by
an ensemble of models

Simple way to obtain uncertainty estimates;
does not require any additional storage; just
the standard point-estimate model

Experiments: Toy 2D Classification

SGLD Samples Non-Bayesian

0.0

0.5
2 -1.0
S
bl
©
c
5 ~L5
=

0 200 400 600 800 1000
iteration

Predictive Performance and Uncertainty

Two fully-connected architectures Generator/discriminator architecture
=, 100 10 . 400 400 10 32 400 100 100
79,510
fcNN1: 79,510 params fcNN2: 478,410 params or
478,410

e Classification accuracy on MNIST

Dataset Model SGD MC-Drop SGLD APD (Ours)

MNIST feNN1 0.981 0973 0.979 0.978
MNIST fcNN2 0.981 0.983 0.980 0.981

Anomaly Detection

Anomaly detection: detecting out-of-distribution (OOD) data given a BNN trained on

in-distribution data
Should be more uncertain about OOD data (e.g., when trying to classify an OOD
example into one of K classes that all correspond to in-distribution data)

AN "ER LK

a5 M P# 1 h it o ,

%d _';:-Qﬁs_sﬁ j{ﬂ My b2 e A __E;-g i“im"@:} ’T*-'?

KW HT I 5 e D A

99 oa/d) LS AR N i T by

&Aﬁﬁéﬁnk E{Obdw RNOSE Bttt / ‘_-“:p- ¢! ,-j'-i ‘r
Omniglot CIFAR-10 bw

notMNIST

Anomaly Detection

Method:
1. Train a classifier on MNIST
2. Attest-time, input 50% MNIST data and 50% OOD data

Uncertainty indicates whether an example is OOD - how much uncertainty is enough?

0.7
0.3 VR(z) =1 — maxp(y|x,D) = 0.3
. Yy
cat dog

We report performance using the area under the receiver operating characteristic curve
(AU-ROC), which is a threshold-independent measure (based on TPR and FPR)

Anomaly Detection Results

Dataset SGD MC-Dropout SGLD APD (Ours)
Det. areaunder ROC PR+ PR- ROC PR+ PR- ROC PR+ PR- ROC PR+ PR-

notMNIST 554 609 483 880 872 821 981 978 983 978 974 98.1
OmniGlot 850 855 796 915 908 903 99.0 988 99.1 98.8 98.6 99.1
VR CIFAR10bw 590 650 504 90.1 885 865 974 970 975 969 965 96.7
Gaussian 643 680 546 913 898 89.0 996 99.6 99.7 996 995 99.6

Uniform 812 792 804 936 912 948 998 998 999 998 99.7 99.8
notMNIST - - - 870 850 810 997 998 996 996 99.7 995
OmniGlot - - - 914 90.7 905 '999 1000 999 '999 999 999
BALD CIFAR10bw - - - 89.3 862 860 994 994 992 991 993 983
Gaussian - - - 90.9 88.6 89.3 100.0 100.0 100.0 100.0 100.0 100.0
Uniform - - - 973 96.6 979 100.0 100.0 100.0 100.0 100.0 100.0

® Anomaly detection results using fcNN2 (478,410 params)
® Our method outperforms SGD and MC dropout, and almost matches SGLD

Experiments: Active Learning

e \When labeling data is expensive, we should make sure we label informative examples

In each acquisition iteration, the model chooses 10 images
from the pool set to have labelled (by a human or oracle)

50 [/ | 9%’//\"\\
L2 23 ggq \ ,'

19 ¢5
o 77
Initial Training Set Unlabeled Pool Set Dpool

mm) |Intuitively: Choose to label the points we're most uncertain about

Experiments: Active Learning

e An acquisition function a(:c) is used to decide which points to query next, e.q.,

r* = arg max al(x
gwEDpooz ()

e Most acquisition functions are based on uncertainty, e.g., entropy, variation ratios, BALD

e Sort the examples in Dpool by decreasing a(:v)
e Choose the top K to add to the training set in one iteration

Experiments: Active Learning

1.0-
—
= 0.9-
|_
o
e
o 0.8-
- 7
9 / SGLD,Random
S07- —e— SGLD,Active
$ 4 Ours,Active
= 06- " ——o—o—o— SGD-Drop,Random
é ' —e— SGD-Drop,Active
—e— MC-Drop,Active
10° 10! 102

num acquisition (T)

Using entropy as the acquisition
function is better than random
BNNs outperform point-estimate
counterparts consistently

APD performs best early, <10
acquisitions, due to either better
regularization or better uncertainty
for active learning

Adversarial Detection - Method

Fast Gradient Sign Method (FGSM) - Relatively easy attack to defend against

Projected Gradient Descent (PGD) - Strong attack

The adversary has access to the network architecture and a single posterior sample

o Gray-box attack because the adversary does not have access to the full posterior
We generated 6000 adversarial examples from the validation set images using the
single posterior as fixed network weights
Generated attacks using samples from the source model (MC dropout, SGLD, or APD)

Adversarial Detection Results

e All approaches were effective when detecting adversarial examples crafted with their

own networks
e \When transferring attacks between networks:
o MC dropout performed near random (50%)
o SGLD and APD were able to detect transferred attacks
o But SGLD outperformed our method on the transferred attacks

Source Attack Type MC-Drop SGLD Ours
MC-Drop FGSM 89.53 94.01 91.70
PGD 88.37 93.95 91.63

FGSM 54.99 83.76 75.93

SGLD PGD 5691 84.98 82.80
O FGSM 54.51 83.05 86.02
PGD 54.98 88.01 93.15

area under (1/100)

Analysis: Do we need a GAN?

60 components achieve 99.3% of SGLD
performance BUT use 9.54M parameters

10

20 30 40
N¢: Number of components

50

60

Using MCMC allows us to avoid
making simplifying assumptions about
the structure of the posterior
Series of mixture of Gaussians with
increasing numbers of components

o Fit to 2000 SGLD samples
The multimodal posterior distribution
induced by SGLD samples cannot be
completely represented with simple,
fully-factorized approximations
A single mode is not sufficient to model
the posterior

APD Storage Savings

Inginginging

3p 20 20 20

R —————— ————— —_ g
___________ .__.______.._._._____.

- | 79,400
g 97.0- - - 20-dim GAN
S 96.5-

8 96.0- =
o 95.5- e 20dim APD
2: 95.0- @ ® SGLD
. == SGLD50
| =~ 5GP 1060
101 102 103

Number of Samples

APD Storage Savings

20 GAN samples <

1000 GAN samples =

BUT
20 SGLD samples 50 SGLD samples
98.0 [N '_'.'_'.__'.'_.:_'.'_'.‘/_'.'_'.'__.'_'._'._'.L'.&"_'.'_'.'_'.'_'.“
97.5 -
Q 97.0 -
S 96.5
L 96.0
@) :
o 95.5 e 20dim APD
<D[95.0- @ ® SGLD
94.5 =-==5GLD 50
| ---- SGID 100
10! 1% 103

Number of Samples

Inginginging

3p 20 20 20

79.400

20-dim GAN

APD vyields 2.5x storage savings
compared to SGLD

APD attains 99.8% of SGLD
performance using 1.67M parameters
(vs 9.54M for MoG)

A Way to Evaluate GANs?

Vanilla GAN

e Evaluating GANs is challenging
Difficult to quantify performance
Some metrics are based on visual
quality, including InceptionScore

AUROC (/100)

Analysis: Comparing GAN Formulations

100 -

80 -

60 -

40 -

20~

w M.L»‘w I‘uﬂ\d' \lﬁM'l“ -L,.u
[

=S e llp)
— WGAN-GP
— WGAN
— GAN

0- | | | | | |
0 5000 10000 15000 20000 25000 30000

Iteration

We use GANs to generate network
parameters

We can indirectly evaluate GAN
formulations by the performance of
the parameters they generate
WGAN-GP converges much faster
and is more stable than the original
GAN or WGAN

One Slide Summary

Uncertainty is useful in many scenarios
BNNs provide a principled way to model parameter and prediction uncertainty

BNNs can be learned using variational inference (VI) or MCMC methods

o VI methods make assumptions about the structure of the posterior, and can only yield samples
from the approximate posterior
MCMC methods draw samples from the true posterior

Drawback of MCMC: computational and storage cost
m Computational cost addressed through the intro of sg-MCMC (e.g., SGLD)

We can apply Bayesian methods by storing samples drawn using MCMC
O But this requires a lot of memory, especially for large networks
Our method alleviates the cost of storing MCMC samples by training a GAN to
generate such samples
O Replace the cost of storing samples with the cost of storing the GAN generator
We evaluate MCMC-based BNNs on modern applications

Conclusion & Future Work

We introduced a framework for distilling BNN posterior samples drawn using SGLD
APD is able to retain the characteristics of the original SGLD samples, as measured by
the performance of generated samples on downstream tasks
APD outperforms MC dropout on all our tasks
MCMC methods have not been widely used due to computational cost
o APD reduces the storage overhead involved in maintaining posterior samples
It is also worthwhile to explore drawing orders of magnitude more samples from SGLD
o Most of the theoretical results hold in the infinite limit
o Online APD is well-suited for this
Since we generate model parameters, we can consider this a new, indirect method to
evaluate GAN formulations by measuring the performance of the parameters they
generate on downstream tasks

Thank you!

