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Motivation: Why do we need uncertainty?

Training

Test
- Try to extrapolate

cat dog dogcat

- Indicate that the example is 
out-of-distribution

dogcat



Motivation: Why do we need uncertainty?

● Medical applications: uncertainty is critical in 
automatic diagnosis systems

● Using uncertainty to understand systems
○ A basketball player’s offensive skill can be judged/estimated by 

the amount of uncertainty he can induce in his movements. 
Here, more uncertainty = better!

● Safety-critical systems: want to have high confidence 
before taking action; otherwise defer to a human



Motivation: Why do we need uncertainty?

Noisy data

Model uncertainty

Predictive uncertainty

● Bayesian methods provide a principled way to capture model uncertainty through the 
posterior distribution               over model parameters

● Can reason about how different models from the posterior behave as a group
● Real-world applications of Bayesian methods (e.g., BNNs) include:

○ Efficient exploration in RL (Vlassis et al., 2012)
○ Active learning (Settles, 2010)
○ Defense against adversarial attacks (Feinman et al., 2017)

(aka, aleatoric uncertainty)

(aka, epistemic uncertainty)



● Parameters represented by distributions
● Find                through VI or MCMC methods
● Make predictions by integrating over 

Overview

● Learn the parameters      by minimizing a 
loss function 

Standard NN vs BNN

Standard Neural Net Bayesian Neural Net

● Depending on the loss function,       can be 
the MLE or MAP point-estimate

● Make predictions by computing

where



NLL (no regularization)

NLL (+      regularization)

Minimizing: Is Equivalent To:

Maximum likelihood estimation

MAP estimation with a Gaussian prior

where

Motivation - Conventional Training == Approximation



Uncertainty Measures
● How can we measure how well a BNN captures uncertainty?

○ By measuring its performance on tasks that require uncertainty estimates
■ Anomaly detection, active learning, adversarial defense

● How do we determine whether an example is out-of-distribution?
○ We measure uncertainty in the predictions, and check whether the uncertainty is 

high → this indicates that the example is likely OOD
● There are several ways in which we can measure uncertainty

1. Compute the entropy of the categorical distribution H(y | x, D)

Variation Ratios (VR)

Bayesian Active Learning by Disagreement (BALD)

Predictive Entropy

Large when...
The model is 
uncertain about y...

But individual settings of the 
parameters are confident about y

0.9

VR = 0.1

Max entropy



Two Ways to Compute the Posterior

● Introduce a parametric distribution             
and minimize the KL divergence:

Variational Inference (VI) MCMC Methods

- VI can only produce samples from the 
approximate posterior

- Most VI approaches make strong 
assumptions about the structure of the 
posterior: assume that the posterior 
distribution factorizes as the product of 
univariate Gaussians

- (Uses ~2x memory to store a mean 
and variance for each parameter)

● In the limit, MCMC methods yield samples 
from the true posterior

● No assumption of factorizing posterior, but 
are not scalable to large datasets, because 
they require computation over the whole 
dataset

● SGLD and other sg-MCMC methods 
address the computational cost by 
operating on mini-batches



Stochastic Gradient Langevin Dynamics (SGLD)

Mini Batch GD (SGD) SGLD

● Obtain samples                           by adding Gaussian noise to SGD updates
● Save the iterates          while training the model - simultaneous training & posterior 

sampling

● Bayesian learning for small mini-batches 

SGLD bridges optimization and Bayesian learning

Transitions from optimization to posterior sampling



Problems with SGLD

● Memory cost:

○ Many copies of the parameters need to be stored

○ For S samples, memory requirements are S times larger

● Computational cost:

○ Makes predictions using many versions of the model

○ For S samples, test-time inference is S times slower than an ML estimate

Problems with SGLD

... ... ...



Problems with SGLD

● Memory cost:

○ Many copies of the parameters need to be stored

○ For S samples, memory requirements are S times larger

● Computational cost:

○ Makes predictions using many versions of the model

○ For S samples, test-time inference is S times slower than an ML estimate

Problems with SGLD

... ... ...
Wastes memory

Wastes time



● Denote the prediction of the teacher by

● Train a student network to approximate the posterior predictive distribution of 
the teacher (= Monte Carlo ensemble)

Related Work: Bayesian Dark Knowledge

Goal: minimize

SGLD predictive distribution Various student network architectures



● Bayesian Dark Knowledge distills the posterior predictive produced by SGLD 
into a single network
+ Saves computation time (no integrating over posterior samples)
+ Saves storage (no need to keep posterior samples around)
- The posterior is lost at test-time

Related Work: Bayesian Dark Knowledge

Cannot compute quantities like BALD:

Requires access to the posterior distribution

● Our approach distills the posterior distribution such that we can draw samples from it at 
test-time



Distilling Posterior Samples using a GAN

...

GAN Generator

More samples = more storage Fixed storage cost for any # samples

Model parameters saved 
during training



Adversarial Posterior Distillation (APD)

Distillation

Inference
SGLD

APD (Ours)



Offline and Online APD

Offline APD Online APD

... GAN

GAN

GAN

GAN

● Two distinct stages:
1. Obtain posterior samples 
2. Train a GAN on those samples

● Alternate between posterior sampling 
and GAN training



Baseline: MC Dropout

● Monte Carlo dropout = applying dropout 
at test-time to obtain predictions made by 
an ensemble of models

+ Simple way to obtain uncertainty estimates; 
does not require any additional storage; just 
the standard point-estimate model

...



Experiments: Toy 2D Classification
SGLD Samples Non-Bayesian

WGAN-GP lossAPD (Ours) during training



Predictive Performance and Uncertainty

784 100 10
784 400 400 10

fcNN1: 79,510 params fcNN2: 478,410 params

● Classification accuracy on MNIST

32 100 100 100
79,510 

or 
478,410

Two fully-connected architectures Generator/discriminator architecture



Anomaly Detection

● Anomaly detection: detecting out-of-distribution (OOD) data given a BNN trained on 
in-distribution data

● Should be more uncertain about OOD data (e.g., when trying to classify an OOD 
example into one of K classes that all correspond to in-distribution data)

notMNIST Omniglot CIFAR-10 bw



Anomaly Detection

● Method:
1. Train a classifier on MNIST
2. At test-time, input 50% MNIST data and 50% OOD data

dogcat

● Uncertainty indicates whether an example is OOD - how much uncertainty is enough?

0.7

0.3

● We report performance using the area under the receiver operating characteristic curve 
(AU-ROC), which is a threshold-independent measure (based on TPR and FPR)



Anomaly Detection Results

● Anomaly detection results using fcNN2 (478,410 params)
● Our method outperforms SGD and MC dropout, and almost matches SGLD



Experiments: Active Learning

Unlabeled Pool SetInitial Training Set

Intuitively: Choose to label the points we’re most uncertain about

In each acquisition iteration, the model chooses 10 images 
from the pool set to have labelled (by a human or oracle)

● When labeling data is expensive, we should make sure we label informative examples



Experiments: Active Learning

● An acquisition function            is used to decide which points to query next, e.g.,

● Sort the examples in                by decreasing
● Choose the top K to add to the training set in one iteration

● Most acquisition functions are based on uncertainty, e.g., entropy, variation ratios, BALD



Experiments: Active Learning

● Using entropy as the acquisition 
function is better than random

● BNNs outperform point-estimate 
counterparts consistently

● APD performs best early, <10 
acquisitions, due to either better 
regularization or better uncertainty 
for active learning



Adversarial Detection - Method

● Fast Gradient Sign Method (FGSM) - Relatively easy attack to defend against

● Projected Gradient Descent (PGD) - Strong attack

● The adversary has access to the network architecture and a single posterior sample
○ Gray-box attack because the adversary does not have access to the full posterior

● We generated 6000 adversarial examples from the validation set images using the 
single posterior as fixed network weights

● Generated attacks using samples from the source model (MC dropout, SGLD, or APD)



Adversarial Detection Results

● All approaches were effective when detecting adversarial examples crafted with their 
own networks

● When transferring attacks between networks:
○ MC dropout performed near random (50%)
○ SGLD and APD were able to detect transferred attacks
○ But SGLD outperformed our method on the transferred attacks



Analysis: Do we need a GAN?

● Using MCMC allows us to avoid 
making simplifying assumptions about 
the structure of the posterior

● Series of mixture of Gaussians with 
increasing numbers of components
○ Fit to 2000 SGLD samples

● The multimodal posterior distribution 
induced by SGLD samples cannot be 
completely represented with simple, 
fully-factorized approximations

● A single mode is not sufficient to model 
the posterior

1 component = fully-factorized Gaussian

60 components achieve 99.3% of SGLD 
performance BUT use 9.54M parameters



APD Storage Savings

20-dim GAN

32 20 20 20
79,400



APD Storage Savings

20-dim GAN

32 20 20 20
79,400

20 GAN samples <
20 SGLD samples 

BUT 1000 GAN samples = 
50 SGLD samples

● APD yields 2.5x storage savings 
compared to SGLD

● APD attains 99.8% of SGLD 
performance using 1.67M parameters 
(vs 9.54M for MoG)



A Way to Evaluate GANs?

WGAN-GP

WGANVanilla GAN

● Evaluating GANs is challenging
● Difficult to quantify performance
● Some metrics are based on visual 

quality, including InceptionScore



Analysis: Comparing GAN Formulations

● We use GANs to generate network 
parameters

● We can indirectly evaluate GAN 
formulations by the performance of 
the parameters they generate

● WGAN-GP converges much faster 
and is more stable than the original 
GAN or WGAN



One Slide Summary 

● Uncertainty is useful in many scenarios
● BNNs provide a principled way to model parameter and prediction uncertainty
● BNNs can be learned using variational inference (VI) or MCMC methods

○ VI methods make assumptions about the structure of the posterior, and can only yield samples 
from the approximate posterior

○ MCMC methods draw samples from the true posterior
○ Drawback of MCMC: computational and storage cost

■ Computational cost addressed through the intro of sg-MCMC (e.g., SGLD)

● We can apply Bayesian methods by storing samples drawn using MCMC
○ But this requires a lot of memory, especially for large networks

● Our method alleviates the cost of storing MCMC samples by training a GAN to 
generate such samples
○ Replace the cost of storing samples with the cost of storing the GAN generator

● We evaluate MCMC-based BNNs on modern applications



Conclusion & Future Work

● We introduced a framework for distilling BNN posterior samples drawn using SGLD
● APD is able to retain the characteristics of the original SGLD samples, as measured by 

the performance of generated samples on downstream tasks
● APD outperforms MC dropout on all our tasks
● MCMC methods have not been widely used due to computational cost

○ APD reduces the storage overhead involved in maintaining posterior samples
● It is also worthwhile to explore drawing orders of magnitude more samples from SGLD

○ Most of the theoretical results hold in the infinite limit
○ Online APD is well-suited for this

● Since we generate model parameters, we can consider this a new, indirect method to 
evaluate GAN formulations by measuring the performance of the parameters they 
generate on downstream tasks



Thank you!


