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Motivation & Summary

• Exploiting correlations between factors of variation can
increase performance on noisy data.

• But correlations are often not robust: they may change
between domains, datasets, or applications

• Minimizing the MI between latent subspaces fails when
attributes are correlated.

• We enforce subspace independence conditioned on
available attributes, which removes only dependencies that
are not due to the correlations structure in the data.

Problem Setup

• We have noisy data x = g(s) where s = (s1, s2, . . . , sK) are
the underlying factors of variation, which may be correlated

• Goal: Find a mapping to a latent space,
f (x) = z = (z1, z2, . . . , zK) such that we can recover the
GT attributes via linear functions ŝk = Rkzk ≈ sk.

• Goal: Learn a model robust to correlation shifts: if we
train on data where corr(si, sj) > 0, then we want the
resulting model to perform well on uncorrelated data
corr(si, sj) = 0, or anticorrelated data, corr(si, sj) < 0.

Objective Functions for Disentanglement

1. Base: minimizing a supervised loss L (e.g., MSE or
cross-entropy),

∑K
i=1 L(ŝi, si)

2. Base+MI: minimizing the unconditional mutual
information between subspaces in addition to the
supervised loss,

∑K
i=1 L(ŝi, si) + I (z1, . . . , zK)

3. Base+CMI: minimizing the conditional mutual
information between subspaces conditioned on observed
attributes, in addition to the supervised loss,∑K

i=1 [L(ŝi, si) + I (zi ; z−i | si)]

Disentanglement with Correlated Variables

• Consider a linear generative model with correlated
Gaussian source variables s, given by:

x = As + n , s ∼ N (0,Cs) , n ∼ N (0,Cn)

where Cs and Cn are covariances for the source and noise
variables.

Adversarial Minimization of Conditional Mutual Information
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• For most tasks, there is no closed form for MI/CMI. We propose an adversarial
approach to minimize CMI, based on batchwise shuffling of latent subspaces.

Full Supervision Does Not Yield Disentanglement

Base Base + MI Base + CMI

VE, Training (Corr = 0.8) 91.9% 69.8% 90.9%
VE, Test (Corr = 0) 87.6% 65.0% 90.9%

M (where ŝ = Mx)

(
0.81 0.14
0.14 0.81

) (
1.07 −0.46
−0.46 1.07

) (
1 0
0 1

)
• Performance drops when the correlation between s1 and s2 shifts at test time.
• → Tries to make use of the assumed correlation between s1 and s2 to counteract

information lost due to noise, but this correlation is no longer present.

Unconditional Disentanglement Fails Under Correlation Shift

• There is correlation between the sources s1 and s2 and therefore I (s1; s2) > 0.
• By enforcing independence, at least one of the subspaces cannot contain all

relevant information about its target value
• The optimal solution under the constraint of minimal MI, I (z1; z2) = 0, fails to

model the in-distribution correlated training data.

Conditional Disentanglement is Robust to Correlation Shift

• z1 and z2 are independent conditioned on either of s1 or s2.
• Enforcing independence conditioned on each of the source

variables is sufficient to yield a robust disentangled
representation: I(z1; z2 | s1) = I(z1; z2 | s2) = 0

• We desire that z1 and z2 share as little information as possible
(given the GT correlation), to improve robustness to shifts.

• z1 necessarily contains information about s2; we enforce that
it does not contain any more information about z2 than
necessary via I (z1; z2|s2)

Linear Examples

Linear Regression Linear Classification
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• Impact of the correlation strength and noise level
• Magenta: performance on correlated training data; Green:

performance on test data with a range of correlation shifts

Occluded Multi-Digit MNIST
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· Task: predict left/right la-
bels
· We used classes 3 and 8

which can become ambiguous
under occlusions

Correlated CelebA

Corr. Train Data · We used attributes Male and
Smiling that we know a priori are
not causally related.
· Minimizing CMI has a larger effect
for stronger correlations, but does not
harm performance for low corr.
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