

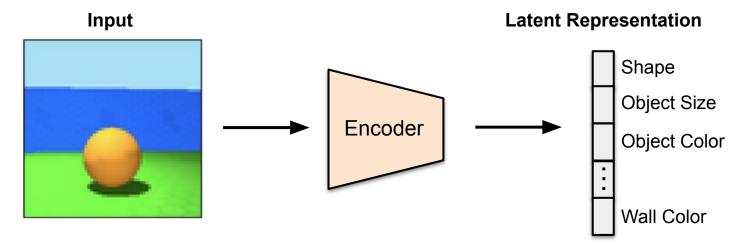
Disentanglement and Generalization Under Correlation Shifts

Christina Funke*, Paul Vicol*, Kuan-Chieh Wang Matthias Kümmerer[†], Richard Zemel[†], Matthias Bethge[†]

* Equal Contribution [†] Shared Senior Authors

Introduction - Disentanglement

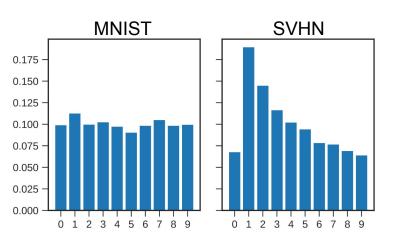
- A *disentangled representation* is one in which different factors of variation are represented by *different components of the representation*
 - e.g., different dimensions in the latent space



- Disentangled representations are useful for:
 - Improving fairness and interpretability
 - Improved *robustness to OOD data* (in domain adaptation & generalization)
 - Controllable generative modeling

Correlations Between Attributes

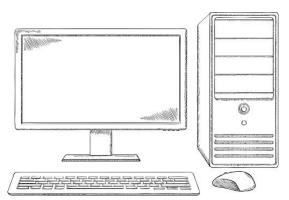
- Most work assumes that the ground-truth factors of variation are independent
 - That is, that there are *no correlations between attributes*
 - This holds for simple/synthetic benchmark tasks (e.g., dSprites, Shapes3D)
- But *real data often has correlations* between attributes, breaking this assumption



Class/Domain Correlation

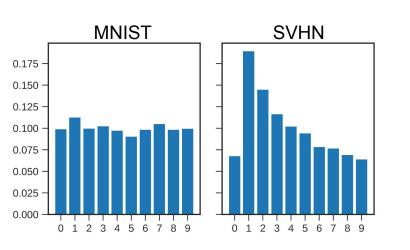
Foreground/Background

Object Co-Occurrence



Correlations Between Attributes

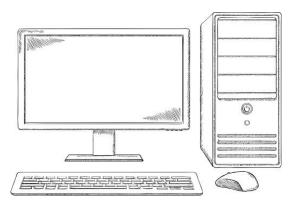
- Most work assumes that the ground-truth factors of variation are independent
 - That is, that there are *no correlations between attributes*
 - This holds for simple/synthetic benchmark tasks (e.g., dSprites, Shapes3D)
- But *real data often has correlations* between attributes, breaking this assumption



Class/Domain Correlation

Foreground/Background

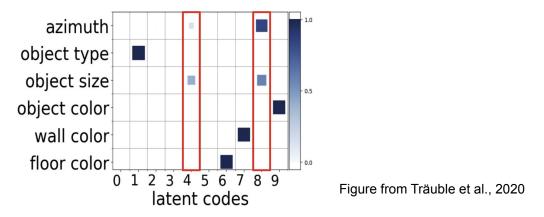
Object Co-Occurrence



• Correlations also occur in *fairness & healthcare*: demographics differ between hospitals

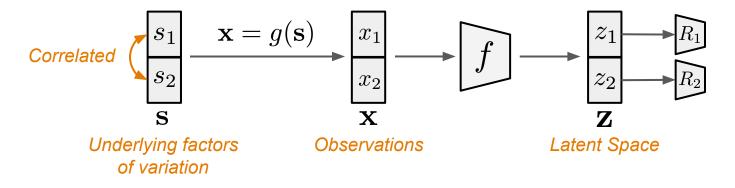
Introduction - Disentanglement of Correlated Attributes

- *Disentanglement of correlated attributes* is problematic (Träuble et al., 2020)
 - For correlated attributes, the corresponding latent codes *encode a mixture of these attributes.*



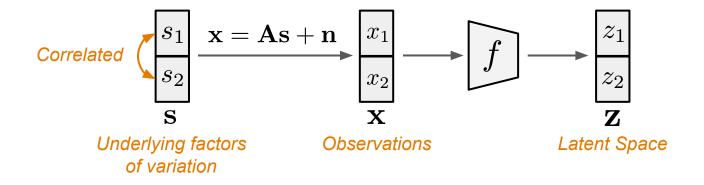
- Träuble et al. suggest to address this with *weak supervision*.
- We show that *even under full supervision*, enforcing independence between latent subspaces can fail.

Problem Setup



- We have noisy data $\mathbf{x} = g(\mathbf{s})$ where $\mathbf{s} = (s_1, s_2, \dots, s_K)$ are the *underlying factors* of variation, which may be correlated
- **Goal:** Find a mapping to a latent space $f(\mathbf{x}) = \mathbf{z} = (\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_K)$ such that we can recover the ground-truth attributes via *linear functions* $\hat{s}_k = \mathbf{R}_k \mathbf{z}_k \approx s_k$
- **Goal:** Learn a model robust to correlation shifts
 - If we train on data where $corr(s_i, s_j) > 0$, then we want the resulting model to perform well on *uncorrelated data* $corr(s_i, s_j) = 0$, or *anticorrelated data*, $corr(s_i, s_j) < 0$

Problem Setup



• Linear generative model with correlated Gaussian source signals

$$\mathbf{x} = \mathbf{A}\mathbf{s} + \mathbf{n} \quad , \quad \mathbf{s} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_{\mathbf{s}}) \quad , \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_{\mathbf{n}})$$
Ground-Truth Mixing Matrix Gaussian Source Signals Gaussian Noise Variables

• Goal: Recover a mapping that *inverts the data-generating process*, $f(\mathbf{x}) = \mathbf{z} = \mathbf{A}^{-1}\mathbf{x}$

Supervised Learning Does Not Yield Disentanglement



• Linear generative model with correlated Gaussian source signals

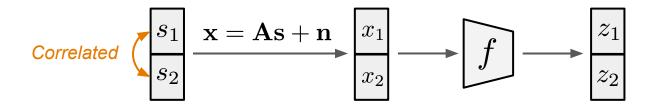
$$\mathbf{x} = \mathbf{A}\mathbf{s} + \mathbf{n} \quad,\quad \mathbf{s} \sim \mathcal{N}(\mathbf{0},\mathbf{C_s}) \quad,\quad \mathbf{n} \sim \mathcal{N}(\mathbf{0},\mathbf{C_n})$$

• The optimal linear regression solution is given by:

$$\widehat{\mathbf{s}}(\mathbf{x}) = \mathbf{C_{sx}} {\mathbf{C_x}}^{-1} \mathbf{x} \quad \text{where} \quad \mathbf{C_{xs}} = \mathbf{C_s} \mathbf{A}^\top \quad \text{and} \quad \mathbf{C_x} = \mathbf{A} \mathbf{C_s} \mathbf{A}^\top + \mathbf{C}$$

 $\neq A^{-1}$ because it is *biased by the correlation structure* C_s and C_n towards directions of maximal signal to noise ratio

Supervised Learning Does Not Yield Disentanglement



• **Problem:** Linear regression is *sensitive to noise*

	Base	Base + MI	Base + CMI
VE, Train (Corr $= 0.8$) VE, Test (Corr $= 0$)	$91.9\%\ 87.6\%$	$69.8\%\ 65.0\%$	$90.9\% \\ 90.9\%$
	Ļ		

The estimator \hat{s} tries to make use of the *assumed correlation* between s_1 and s_2 to *counteract the information lost due to noise*, but this correlation is *no longer present in the test data*.

• There is *no constraint* preventing the model from encoding both s_1 and s_2 into each of z_1 and z_2

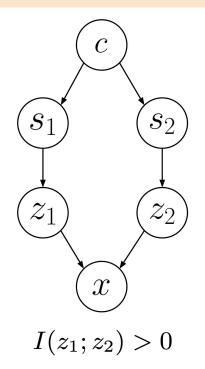
Unconditional Independence Constraint Does Not Help



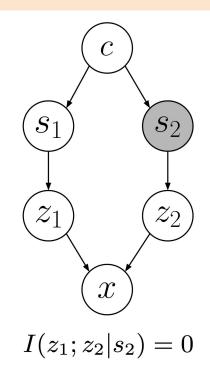
- **Common approach:** Enforce independence by minimizing the MI between latent subspaces $I(z_1; z_2) = 0$
- **Issue:** Because s_1 and s_2 are correlated, $I(s_1; s_2) > 0$
 - By enforcing $I(z_1; z_2) = 0$, at least one of the subspaces cannot contain all relevant information about its attribute
 - This leads to poor performance on the in-distribution (correlated) training data

	Base	Base + MI	Base + CMI
VE, Train ($Corr = 0.8$)	91.9%	69.8%	90.9%
${ m VE},~{ m Test}~({ m Corr}=0)$	87.6%	65.0%	90.9%

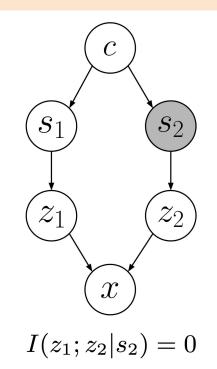
• Assuming a *common cause* for the correlation between s_1 and s_2 , there is a connection in the graphical model between z_1 and z_2 introducing the statistical dependence.



- Assuming a *common cause* for the correlation between s_1 and s_2 , there is a connection in the graphical model between z_1 and z_2 introducing the statistical dependence.
- Observing either s_1 or s_2 disconnects z_1 and z_2

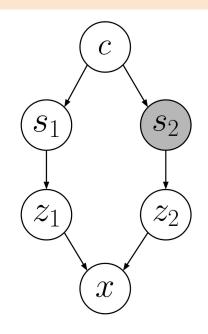


- Assuming a *common cause* for the correlation between s_1 and s_2 , there is a connection in the graphical model between z_1 and z_2 introducing the statistical dependence.
- Observing either s_1 or s_2 disconnects z_1 and z_2
- We desire that z_1 and z_2 share as little information as possible (given the ground truth correlation)



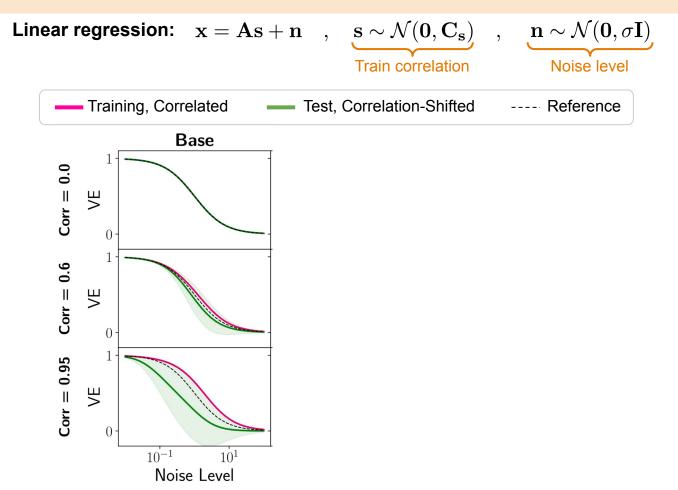
- Assuming a *common cause* for the correlation between s_1 and s_2 , there is a connection in the graphical model between z_1 and z_2 introducing the statistical dependence.
- Observing either s_1 or s_2 disconnects z_1 and z_2
- We desire that z_1 and z_2 share as little information as possible (given the ground truth correlation)
- We *minimize the MI* between latent subspaces *conditioned on the attributes*:

$$I(z_1; z_2 \mid s_1) = 0$$
 and $I(z_1; z_2 \mid s_2) = 0$

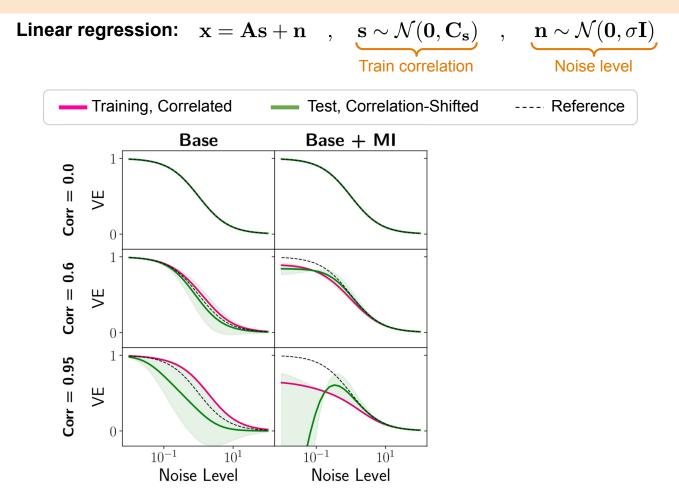


	Base	Base + MI	Base + CMI
VE, Train (Corr $= 0.8$)	91.9%	69.8%	90.9%
VE, Test $(Corr = 0)$	87.6%	65.0%	90.9%

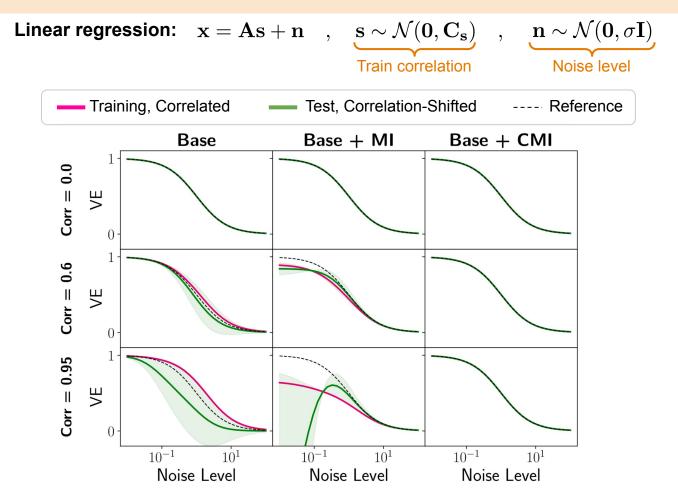
Training Set Correlation and Noise Level



Training Set Correlation and Noise Level

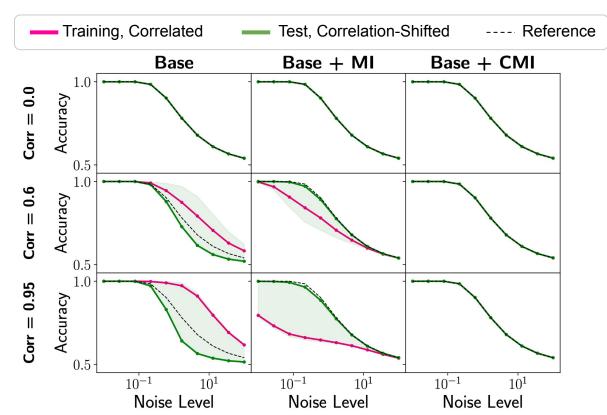


Training Set Correlation and Noise Level



Multi-Attribute Classification Results

• Synthetic *classification task* with multiple attributes. Observed data $\mathbf{x} = \mathbf{A}\mathbf{a} + \mathbf{n}$ is generated from noise $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}_{\mathbf{n}})$ and correlated source attributes $a_k = \pm 1, \forall k \in \{1, \dots, K\}$



Adversarial Disentanglement

$$I(x; y \mid z) = 0 \qquad \text{if} \qquad p(x, y \mid z) = p(x \mid z)p(y \mid z)$$

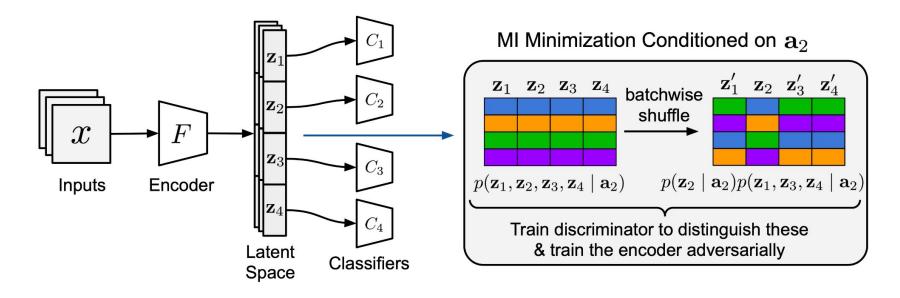
We align these distributions adversarially

Adversarial Disentanglement

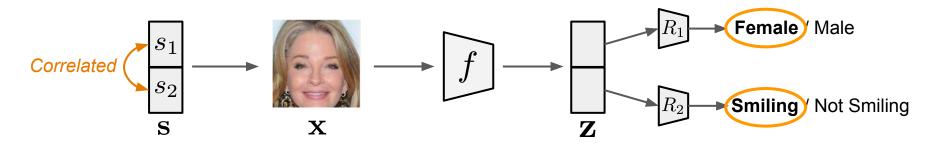
$$I(x; y \mid z) = 0 \qquad \text{if} \qquad p(x, y \mid z) = p(x \mid z)p(y \mid z)$$

We align these distributions adversarially

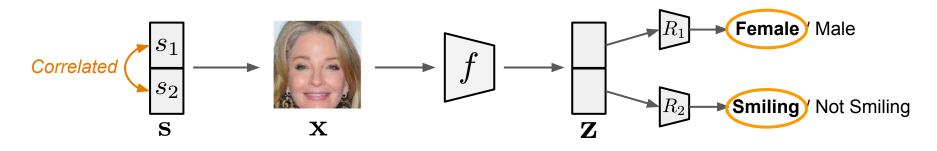
• We use an adversarial approach to minimize CMI, based on batchwise shuffling of latent subspaces



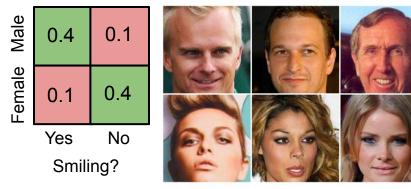
• We used attributes Female/Male and Smiling/Not Smiling that we know a priori are not causally related.

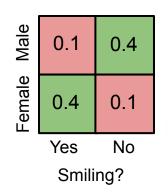


• We used attributes Female/Male and Smiling/Not Smiling that we know a priori are not causally related.

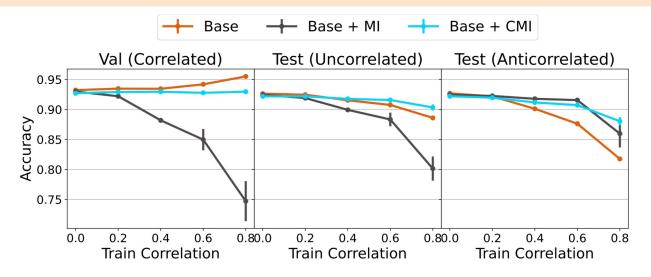


Correlated Train Data

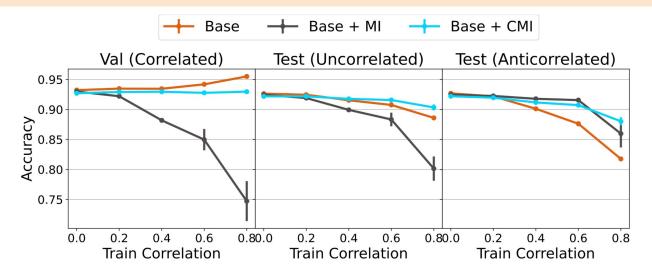




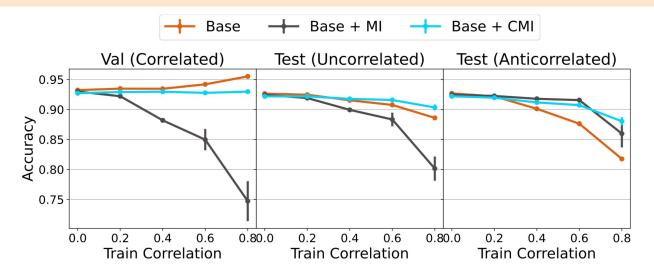
Anti-Correlated Test Data



Base: ✓ Performs well on correlated validation data
 ★ Performance drops on correlation-shifted test data



- Base: ✓ Performs well on correlated validation data
 ★ Performance drops on correlation-shifted test data
- **Base + MI: *** Fails to model the in-distribution, correlated validation data



- Base: ✓ Performs well on correlated validation data
 ★ Performance drops on correlation-shifted test data
- **Base + MI: *** Fails to model the in-distribution, correlated validation data
- Base + CMI: ✓ Achieves the most consistent performance across correlated and correlation-shifted datasets
 Has a larger effect for stronger correlations, but does not harm performance for low correlation strengths.

- Even without constructing correlated datasets from CelebA by subsampling, we can see *detrimental effects due to correlations* if we evaluate performance on *subpopulations* of correlated (in-distribution) data.
- Some combinations of attributes are more common than others, and models that exploit these correlations for prediction may treat rare combinations unfairly
 - Base fails on rare attribute combinations
 - **Base + MI** does not succeed even on the common attribute combinations
 - **Base + CMI** improves accuracy on rare attribute combinations

	Common Combinations		Rare Combinations	
	Female	Male	Female	Male
	+	+	+	+
	Non-Smiling	Smiling	Smiling	Non-Smiling
Base	4%	5%	33%	49%
Base + MI	24%	28%	11%	26%
Base + CMI	9%	9%	19%	25%

Summary

- Learning robust disentangled representations can be challenging in the presence of correlations, even with full supervision
- We introduced and motivated *subspace independence conditioned on available attributes* as the *correct objective for disentanglement* in correlated settings.
- We described an *algorithm* to achieve conditional independence for general classification tasks.
- We showed that CMI minimization *improves robustness to correlation shifts* on both synthetic tasks and real-world datasets.

Thank you!