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For all these tasks, the objective is: L(8)

‘ We need the gradient VyL(6)

Hyperparameter
Optimization

Training or validation loss

Inner model parameters +
optimizer state (e.g.,
momentum buffers)
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Existing Approaches

e Challenges with both short and long unrolls of the inner problem
o Short unrolls — iruncation bias
o Long unrolls — chaofic outer loss landscapes

e [Lvolution Strategies (ES) computes an estimate of the gradient of a smoothed loss
1
ES
g = ;Eew\/(o,an) [eL(6 + €)]

e Smoothing overcomes chaos
e But applying ES to full unrolls of the inner problem is expensive — slow updates
e Naively applying ES to truncated unrolls leads to bias

e [Persistent Evolution Strategies (PES) computes unbiased gradient estimates using
truncated unrolls



Variance Comparison
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ES-Single Computation Graph
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Full-Unroll ES samples a
perturbation for each particle,
and runs a full unroll for T
steps using perturbed outer
parameters
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PES samples a new perturbation for each
particle in each unroll, and sums the
perturbations experienced by each particle up
to the current point in the inner problem
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ES-Single samples a single perturbation per
particle at the start of each inner
problem—keeping it fixed for the duration of
the problem—and does not sum perturbations
over time.



ES-Single Algorithm

Algorithm 1 Truncated Evolution Strategies (ES) applied  Algorithm 2 ES with a single perturbation per particle re-

to partial unrolls of a computation graph. applied in each truncated unroll (ES-Single).
Input: s, initial state Input: s, initial state
K, truncation length for partial unrolls K, truncation length for partial unrolls
N, number of particles N, number of particles
o, standard deviation of perturbations o, standard deviation of perturbations
a, learning rate for outer optimization @, learning rate for outer optimization
Initialize s = s Initialize s) = sg fori € {1,..., N}
while inner problem not finished do fori:=1,...,Ndo
§® «0 @ _ | draw from N'(0,02I)  iodd
fori=1..... N do 7T —et-b i even
[e@ B { draw from N'(0,021) i odd ] end for
D | el i even while inner problem not finished do
Ly < unroll(s,0 + €9 K) ?ES .Smg°1<— 0 va
~ES ~ES (i)"(i) or 1 = e (1]
endgfor<_ g~ +erly 5@, LY « unroll(s®, 0 —i—Ae@, K)
QES - Nﬁ; _ QES gES-Smgle « gES-Smgle + e® L%)
s < unroll(s, 8, K) end for ,
06— agES gES-Slngle . ﬁ gES-Slngle
end while ;
0 «— 60— agES-Smgle

end while




ES-Single Properties

e ES-Single is mathematically equivalent to Full-Unroll ES, but differs algorithmically
o ES-Single has the same bias and variance characteristics as Full-Unroll ES

Bias Variance
Proposition 3.1 (ES-Single is unbiased). Assume Proposition 3.2 (ES-Single Variance). The total
that L(0) is quadratic and VoL (0) exists. Then, variance of ES-Single is tr(Var(QES'Si"gle)) = (P +
the ES-Single gradient estimator is unbiased, that is, 1)|| Vo L(0)|%, where P is the dimensionality of 6.

bias( gES—Single) —E, [ gES—Single] — VeL(8) = 0. . - - .
Proof. The proof is provided in Appendix D.2. [

Proof. The proof is provided in Appendix D.1. [



Influence Balancing: Task Setup
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e Task: /nfluence balancing, introduced by Tallec & Olivier (2017)
o Tune a scalar parameter @ that has a negafive influence in the short term, but a
positive influence in the long term
o Designed such that fruncated methods move in the wrong direction



Influence Balancing: Results
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ES-Single is unbiased: it behaves like
RTRL when using many particles
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ES-Single is more stable than
PES when using fewer patrticles



Meta-Optimizing an MNIST LR Schedule

—-0.5 o —
— -11.0
Meta-optimizing a learning rate schedule _1.0 — 110.2
for training an MLP on MNIST
o . 9.4
o Tune the initial learning rate and _15
decay factor 8.6

ES-Single behaves similarly to PES, but
has more stable convergence at the
optimum

Log Init LR

—2 0 2
Log LR Decay



Optimizing Several Continuous & Discrete Hyperparams

Training a 5-layer MLP on FashionMNIST

Optimizing 29 continuous and discrete

hyperparameters

o Per-parameter block learning rates and

momentum coefficients, and the number
of hidden units per layer

ES-Single reaches lower meta-objective

values using less total compute than

truncated ES, random search, or PES
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Meta-Training a Learned Optimizer

Meta-training a learned optimizer
targeting the optimization of an MLP on
FashionMNIST

Here, T=5000 and K=10

ES-Single works in some scenarios where
PES does not
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LSTM Copy Task

( Copy Task )
Input: 001101-----—-
Output: -———-—- 001101

e Challenge: Scaling to longer sequences

e [runcated methods like TBPTT and
truncated ES fail fo model long-term
dependencies

e PES with K=1 works, but is slow

e ES-Single with K=1 is significantly faster
than PES, and reaches larger T
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Telescoping Sums

e (Can use telescoping sums to target the final fraining loss

T
> pe= (6 — Lo1) + -+ (Ly — Le=7) = L
t=0
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Log L2 Coefficient
|

Tuning L, Regularization for UCI Regression

/ Different random initializations of the log L, coefficient
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PES vs ES-Single: Stability and Performance
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Meta-Gradient Comparison

Vertical lines denote the start of a new inner problem (T=2000)
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(a) Adaptation of the log-learning rate. (b) PES and ES-Single meta-gradients over the

course of multiple inner problems.



Importance of Smoothing

Ablation over the perturbation scale o, to
optimize an MLP learned optimizer.

Small perturbation scales lead to behavior
similar to gradient-based methods, which may
get stuck in sub-optimal local minima in
chaotic loss landscapes.

o For o = 1e-6, meta-optimization fails to make
progress

In contrast, using an appropriate scale,
o=1e-2, leads to stable convergence
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Comparison to a Gradient-Based Heuristic

Train Loss
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Here, we compared to “Gradient Descent: The Ultimate Optimizer” (GDTUO)
o This is based on Hypergradient Descent (HD), which adapts optimizer hyperparameters via a
1-step lookahead meta-objective

GDTUO is a gradient-based analogue to vanilla truncated ES, and behaves like ES



Generalization of PES and ES-Single
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e This computation graph generalizes ES-Single and PES
e Uses the same perturbation for K sequential truncated unrolls
e After K unrolls, it adds the current perturbation to the perturbation accumulator, and

samples a new perturbation



Generalization of PES and ES-Single: Algorithm

Algorithm 3 Truncated Evolution Strategies (ES) applied Algorithm 4 Generalization of ES-Single and PES, with an
to partial unrolls of a computation graph. arbitrary re-sampling interval M.

Input: s, initial state
K, truncation length for partial unrolls
N, number of particles
o, standard deviation of perturbations
o, learning rate for outer optimization
Initialize s = s
while inner problem not finished do
S0
fori=1,...,Ndo
: draw from N'(0,0%I)  iodd
6(7') = { (i—l) %
—€ i even
LS« unroll(s, 6 + €, K)
QES P QES + 6(1-)12%‘)

end for

~ES 1 ~ES
g < Noz9

8 < unroll(s, 0, K)
0+ 0 —ag™
end while

Input: s, initial state
K, truncation length for partial unrolls
M, re-sampling interval
N, number of particles
o, standard deviation of perturbations
o, learning rate for outer optimization
Initialize s() = s fori € {1,...,N}
Initialize £) « 0 fori € {1,...,N}
while inner problem not finished, iteration j do
if j mod M = 0 then
fori=1,...,Ndo

@) draw from N'(0,02I)  iodd
€ —

—e-1) i even
g(i) e g(i) +e®
end for
end if
gES-Gen —0

fori=1,...,Ndo
8@, f,g? < unroll(s), 0 + € K)
GESCen  gESGen 4 £(3) [”/g?

end for

~ES-Gen 1 ~ES-Gen
g & W

0 — 0 _ agES-Gen

end while




Conclusion

e ES-Single is a simple method for gradient estimation in unrolled computation graphs

e Key idea: sample a single perturbation per particle at the start of each inner problem,
and keep it fixed over all partial unrolls of the problem

e ES-Single has constant variance with respect to the number of partial unrolls per inner
problem

o Addresses a key challenge faced by PES, and makes it scalable to long inner
problems with short unrolls

e Empirically, ES-Single outperforms PES on a range of tasks, including hyperparameter

optimization and RNN training

‘ ’ https://colab.research.google.com/drive/1fgSzwal XfJKbY TntEFfNbc2UuTXwEwWOA?usp=sharing


https://colab.research.google.com/drive/1fgSzwaIXfJKbYTntEFfNbc2UuTXwEw0A?usp=sharing
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