
Low-Variance Gradient Estimation in
Unrolled Computation Graphs with ES-Single

Paul Vicol, Zico Kolter, Kevin Swersky

Paul Vicol, Zico Kolter, Kevin Swersky

● For all these tasks, the objective is:

Motivation

● Many problems in ML are involve unrolled computation graphs

RNN Training

Hyperparameter Optimization

We need the gradient

Cross-entropy
loss per token

RNN hidden state

RNN parameters

Cross-entropy
loss per token

RNN hidden state

Hyperparameters
Hyperparameters

Inner model parameters +
optimizer state (e.g.,
momentum buffers)

Hyperparameter
Optimization

Unrolled
Computation Graph

Training or validation loss

Existing Approaches

● Challenges with both short and long unrolls of the inner problem
○ Short unrolls → truncation bias
○ Long unrolls → chaotic outer loss landscapes

● Existing methods: Truncated backprop through time, RTRL & approximations
○ Suffer from either high compute or memory usage, bias, high variance

● Evolution Strategies (ES) computes an estimate of the gradient of a smoothed loss

● Smoothing overcomes chaos
● But applying ES to full unrolls of the inner problem is expensive — slow updates
● Naively applying ES to truncated unrolls leads to bias

● Persistent Evolution Strategies (PES) computes unbiased gradient estimates using
truncated unrolls

Variance Comparison

● We introduce ES-Single: an algorithm for
unbiased gradient estimation using partial
unrolls

● Simpler and easier to implement than PES
● Has constant variance w.r.t. the number of

partial unrolls per inner problem

● PES is unbiased, but its variance increases
with the number of partial unrolls per inner
problem

ES-Single Computation Graph

Full-Unroll ES samples a
perturbation for each particle,
and runs a full unroll for T
steps using perturbed outer
parameters

PES samples a new perturbation for each
particle in each unroll, and sums the
perturbations experienced by each particle up
to the current point in the inner problem

ES-Single samples a single perturbation per
particle at the start of each inner
problem—keeping it fixed for the duration of
the problem—and does not sum perturbations
over time.

ES-Single Algorithm

ES-Single Properties

● ES-Single is mathematically equivalent to Full-Unroll ES, but differs algorithmically
○ ES-Single has the same bias and variance characteristics as Full-Unroll ES

Bias Variance

Influence Balancing: Task Setup

● Task: Influence balancing, introduced by Tallec & Olivier (2017)
○ Tune a scalar parameter that has a negative influence in the short term, but a

positive influence in the long term
○ Designed such that truncated methods move in the wrong direction

Influence Balancing: Results

ES-Single is unbiased: it behaves like
RTRL when using many particles

ES-Single is more stable than
PES when using fewer particles

Meta-Optimizing an MNIST LR Schedule

● Meta-optimizing a learning rate schedule
for training an MLP on MNIST
○ Tune the initial learning rate and

decay factor
● ES-Single behaves similarly to PES, but

has more stable convergence at the
optimum

Optimizing Several Continuous & Discrete Hyperparams

● Training a 5-layer MLP on FashionMNIST
● Optimizing 29 continuous and discrete

hyperparameters
○ Per-parameter block learning rates and

momentum coefficients, and the number
of hidden units per layer

● ES-Single reaches lower meta-objective
values using less total compute than
truncated ES, random search, or PES

Meta-Training a Learned Optimizer

● Meta-training a learned optimizer
targeting the optimization of an MLP on
FashionMNIST

● Here, T=5000 and K=10
● ES-Single works in some scenarios where

PES does not

LSTM Copy Task

Input: 001101------

Output: ------001101

● Challenge: Scaling to longer sequences
● Truncated methods like TBPTT and

truncated ES fail to model long-term
dependencies

● PES with K=1 works, but is slow
● ES-Single with K=1 is significantly faster

than PES, and reaches larger T

Copy Task

Telescoping Sums
● Can use telescoping sums to target the final training loss

Tuning L2 Regularization for UCI Regression

Different random initializations of the log L2 coefficient

PES vs ES-Single: Stability and Performance

Large LR for PES Small LR for PES

Diverges after initially getting to
the optimal region

Stable convergence, but very
slow compared to ES-Single

Meta-Gradient Comparison

Vertical lines denote the start of a new inner problem (T=2000)

Importance of Smoothing

● Ablation over the perturbation scale σ, to
optimize an MLP learned optimizer.

● Small perturbation scales lead to behavior
similar to gradient-based methods, which may
get stuck in sub-optimal local minima in
chaotic loss landscapes.

○ For σ = 1e-6, meta-optimization fails to make
progress

● In contrast, using an appropriate scale,
σ=1e-2, leads to stable convergence

Comparison to a Gradient-Based Heuristic

● Here, we compared to “Gradient Descent: The Ultimate Optimizer” (GDTUO)
○ This is based on Hypergradient Descent (HD), which adapts optimizer hyperparameters via a

1-step lookahead meta-objective
● GDTUO is a gradient-based analogue to vanilla truncated ES, and behaves like ES

Generalization of PES and ES-Single

● This computation graph generalizes ES-Single and PES
● Uses the same perturbation for K sequential truncated unrolls
● After K unrolls, it adds the current perturbation to the perturbation accumulator, and

samples a new perturbation

Generalization of PES and ES-Single: Algorithm

Conclusion

● ES-Single is a simple method for gradient estimation in unrolled computation graphs
● Key idea: sample a single perturbation per particle at the start of each inner problem,

and keep it fixed over all partial unrolls of the problem
● ES-Single has constant variance with respect to the number of partial unrolls per inner

problem
○ Addresses a key challenge faced by PES, and makes it scalable to long inner

problems with short unrolls
● Empirically, ES-Single outperforms PES on a range of tasks, including hyperparameter

optimization and RNN training

https://colab.research.google.com/drive/1fgSzwaIXfJKbYTntEFfNbc2UuTXwEw0A?usp=sharing

https://colab.research.google.com/drive/1fgSzwaIXfJKbYTntEFfNbc2UuTXwEw0A?usp=sharing

Thank you!

