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● For all these tasks, the objective is: 

Motivation

● Many problems in ML are involve unrolled computation graphs
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Existing Approaches

● Challenges with both short and long unrolls of the inner problem
○ Short unrolls → truncation bias
○ Long unrolls → chaotic outer loss landscapes

● Existing methods: Truncated backprop through time, RTRL & approximations
○ Suffer from either high compute or memory usage, bias, high variance

● Evolution Strategies (ES) computes an estimate of the gradient of a smoothed loss

● Smoothing overcomes chaos
● But applying ES to full unrolls of the inner problem is expensive — slow updates
● Naively applying ES to truncated unrolls leads to bias

● Persistent Evolution Strategies (PES) computes unbiased gradient estimates using 
truncated unrolls



Variance Comparison

● We introduce ES-Single: an algorithm for 
unbiased gradient estimation using partial 
unrolls

● Simpler and easier to implement than PES
● Has constant variance w.r.t. the number of 

partial unrolls per inner problem

● PES is unbiased, but its variance increases 
with the number of partial unrolls per inner 
problem



ES-Single Computation Graph

Full-Unroll ES samples a 
perturbation for each particle, 
and runs a full unroll for T 
steps using perturbed outer 
parameters

PES samples a new perturbation for each 
particle in each unroll, and sums the 
perturbations experienced by each particle up 
to the current point in the inner problem

ES-Single samples a single perturbation per 
particle at the start of each inner 
problem—keeping it fixed for the duration of 
the problem—and does not sum perturbations 
over time.



ES-Single Algorithm



ES-Single Properties

● ES-Single is mathematically equivalent to Full-Unroll ES, but differs algorithmically
○ ES-Single has the same bias and variance characteristics as Full-Unroll ES

Bias Variance



Influence Balancing: Task Setup

● Task: Influence balancing, introduced by Tallec & Olivier (2017)
○ Tune a scalar parameter     that has a negative influence in the short term, but a 

positive influence in the long term
○ Designed such that truncated methods move in the wrong direction



Influence Balancing: Results

ES-Single is unbiased: it behaves like 
RTRL when using many particles

ES-Single is more stable than 
PES when using fewer particles



Meta-Optimizing an MNIST LR Schedule

● Meta-optimizing a learning rate schedule 
for training an MLP on MNIST
○ Tune the initial learning rate and 

decay factor
● ES-Single behaves similarly to PES, but 

has more stable convergence at the 
optimum



Optimizing Several Continuous & Discrete Hyperparams

● Training a 5-layer MLP on FashionMNIST
● Optimizing 29 continuous and discrete 

hyperparameters
○ Per-parameter block learning rates and 

momentum coefficients, and the number 
of hidden units per layer

● ES-Single reaches lower meta-objective 
values using less total compute than 
truncated ES, random search, or PES



Meta-Training a Learned Optimizer

● Meta-training a learned optimizer 
targeting the optimization of an MLP on 
FashionMNIST

● Here, T=5000 and K=10
● ES-Single works in some scenarios where 

PES does not



LSTM Copy Task

Input:    001101------

Output: ------001101

● Challenge: Scaling to longer sequences
● Truncated methods like TBPTT and 

truncated ES fail to model long-term 
dependencies

● PES with K=1 works, but is slow
● ES-Single with K=1 is significantly faster 

than PES, and reaches larger T

Copy Task



Telescoping Sums
● Can use telescoping sums to target the final training loss



Tuning L2 Regularization for UCI Regression

Different random initializations of the log L2 coefficient



PES vs ES-Single: Stability and Performance

Large LR for PES Small LR for PES

Diverges after initially getting to 
the optimal region

Stable convergence, but very 
slow compared to ES-Single



Meta-Gradient Comparison

Vertical lines denote the start of a new inner problem (T=2000)



Importance of Smoothing

● Ablation over the perturbation scale σ, to 
optimize an MLP learned optimizer.

● Small perturbation scales lead to behavior 
similar to gradient-based methods, which may 
get stuck in sub-optimal local minima in 
chaotic loss landscapes.

○ For σ = 1e-6, meta-optimization fails to make 
progress

● In contrast, using an appropriate scale, 
σ=1e-2, leads to stable convergence



Comparison to a Gradient-Based Heuristic

● Here, we compared to “Gradient Descent: The Ultimate Optimizer” (GDTUO)
○ This is based on Hypergradient Descent (HD), which adapts optimizer hyperparameters via a 

1-step lookahead meta-objective
● GDTUO is a gradient-based analogue to vanilla truncated ES, and behaves like ES



Generalization of PES and ES-Single

● This computation graph generalizes ES-Single and PES
● Uses the same perturbation for K sequential truncated unrolls
● After K unrolls, it adds the current perturbation to the perturbation accumulator, and 

samples a new perturbation



Generalization of PES and ES-Single: Algorithm



Conclusion

● ES-Single is a simple method for gradient estimation in unrolled computation graphs
● Key idea: sample a single perturbation per particle at the start of each inner problem, 

and keep it fixed over all partial unrolls of the problem
● ES-Single has constant variance with respect to the number of partial unrolls per inner 

problem
○ Addresses a key challenge faced by PES, and makes it scalable to long inner 

problems with short unrolls
● Empirically, ES-Single outperforms PES on a range of tasks, including hyperparameter 

optimization and RNN training

https://colab.research.google.com/drive/1fgSzwaIXfJKbYTntEFfNbc2UuTXwEw0A?usp=sharing 
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