
Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen†‡, Paul Vicol†‡, Jimmy Ba†‡, Dustin Tran>�, Roger Grosse†‡

†University of Toronto ‡Vector Institute >Google �Columbia University

Motivation

•Stochastic weights are used in many settings:
•Regularization (DropConnect)
•Training BNNs (Gaussian perturbations)
•Evolution Strategies
•Exploration in reinforcement learning

•Due to the large number of weights, it is very expensive to
compute and store separate weight perturbations for every
example in a mini-batch.

•All examples in a mini-batch typically share the same weight
perturbation, thereby limiting the variance reduction effect of
large mini-batches.

Summary

•We developed a method called Flipout that allows us to
sample pseudo-independent weight perturbations efficiently
for each example in a mini-batch.

•Flipout decorrelates the gradients between examples and
achieves a 1/N variance reduction effect in practice.

•Flipout applies to any perturbation distribution that
factorizes by weight and is symmetric around 0.

•Flipout speeds up training neural networks with multiplicative
Gaussian perturbations, is effective at regularizing LSTMs,
and enables us to vectorize evolution strategies.

Theoretical Results

•Flipout gives unbiased stochastic gradients.

•Flipout is guaranteed to have smaller variance than shared
perturbations.

Independent:
α

N

Shared:
α

N
+ β + γ

Flipout:
α

N
+ γ

α =
variance of gradients
on individual examples

β = covariance from sampling r
and s

γ = covariance from sampling
∆̂W

Method

One shared 
perturbation 

matrix...

...multiplied by 
independent rank 

one sign matrices...

...yields 
pseudo-independent 
weight perturbations.

0 1-1

•To vectorize these computations, we define matrices R and S
whose rows correspond to the random sign vectors rn and sn
for all examples in the mini-batch. Let X denote the batch
activations in one layer of a neural net. The next layer’s
activations are given by:

Y = φ
(
XW +

(
(X ◦ S)∆̂W

)
◦ R
)
.

where φ denotes the activation function.

Variance Reduction

•Flipout achieves the ideal linear variance reduction with
increasing mini-batch size for FC-NNs, CNNs, and RNNs.

100 101 102 103 104

Batch size

10 7

10 6

10 5

10 4

10 3

10 2

v
a
ri

a
n
ce

Conv1

Conv8

101 102 103 104

Batch Size

10 11

10 10

10 9

10 8

V
a
ri

a
n
ce

Wf

Wi

Wo

Wc

ConVGG on CIFAR-10 LSTM on Penn Treebank

Dotted: shared perturbations. Solid: flipout

LSTM Regularization

•Character-level Penn Treebank: Flipout achieves the best
reported results for a 1-layer, 1000 hidden unit architecture.

Model Valid Test
Unregularized LSTM 1.468 1.423
Semeniuta (2016) 1.337 1.300
Zoneout (2016) 1.306 1.270
Gal (2016) 1.277 1.245
Mult. Gauss. (ours) 1.257 1.230
Mult. Gauss + Flipout (ours) 1.256 1.227

Large Batch Training

•Flipout converges in ∼3x fewer iterations than shared
perturbations and is ∼2x as expensive, yielding a 1.5x
speedup overall.

0 5000 10000 15000 20000 25000 30000

0.5

1.0

1.5

2.0
Train Loss (FC)

LRT
NonFlip
Flip

1000 2000 3000 4000 5000 6000

Iterations

0

5

10

15

20
Train Loss (Conv)

NonFlip
Flip

Figure: MNIST training using Bayes By Backprop with batch size 8192

Vectorizing Evolution Strategies

•FlipES is as sample-efficient as using fully-independent
perturbations. One GPU with Flipout can handle the same
throughput as at least 40 CPU cores using existing methods.

0 2000 4000 6000 8000 10000 12000

0.02
0.03
0.04
0.05
0.06
0.07
0.08

Train Error
IdealES
FlipES

0 2000 4000 6000 8000 10000 12000

Iterations

0.03
0.04
0.05
0.06
0.07
0.08

Validation Error
IdealES
FlipES


