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Motivation Method LSTM Regularization

» Stochastic weights are used in many settings: One shared ..multiplied by .yields o Character-level Penn Treebank: Flipout achieves the best
L. perturbation independent rank pseudo-independent d e f 1-] 1000 hidd : hi
o Regularization (DropConnect) matrix... one sign matrices... weight perturbations. reported results tor a 1-layer, idden unit architecture.

o Training BNNs (Gaussian perturbations)

o Evolution Strategies S| Model Valid Test

o Exploration in reinforcement learning Unregu.larlzed LSTM 1.463 1.423
Semeniuta (2016) 1.337 1.300

e Due to the large number of weights, it is very expensive to — Zoneout (2016) 1306 1970
compute and store separate weight perturbations for every Gal (2016) 1.277 1.245
example in a mini-batch Mult. Gauss. (ours) 1.257 1.230

Mult. Gauss + Flipout (ours) 1.256 1.227

o All examples in a mini-batch typically share the same weight

perturbation, thereby limiting the variance reduction effect of
large mini-batches.

Large Batch Training

o Flipout converges in ~3x fewer iterations than shared

perturbations and is ~2x as expensive, yielding a 1.5x

r
Summary : oSy

speedup overall.

o To vectorize these computations, we define matrices R and S |
Train Loss (FC)

o We developed a method called Flipout that allows us to

whose rows correspond to the random sign vectors r, and s, - — wr
. . . LR : - NonFlip
sample pseudo-independent weight perturbations efficiently for all examples in the mini-batch. Let X denote the batch o -
f r h Xam | In mlnl_ h . . - ) 0> " R s e e sttt
OF €acth €xampie in 4 batc activations in one layer of a neural net. The next layer’s S
o Flipout decorrelates the gradients between examples and activations are given by: Train Loss (Conv)

achieves a 1/N variance reduction effect in practice. - : \\ — oo
Y:¢(XW+((X05)AW)OR). s

o Flipout applies to any perturbation distribution that : —
factorizes by weight and is symmetric around 0. where ¢ denotes the activation function. iterations

o Flipout speeds up training neural networks with multiplicative Figure: MNIST training using Bayes By Backprop with batch size 8192

Gaussian perturbations, is effective at regularizing LSTMs,

. _ | Variance Reduction
and enables us to vectorize evolution strategies. Vectorizing Evolution Strategies

o Flipout achieves the ideal linear variance reduction with
Theoretical Results increasing mini-batch size for FC-NNs, CNNs, and RNNs.

o FlipES is as sample-efficient as using fully-independent
perturbations. One GPU with Flipout can handle the same
throughput as at least 40 CPU cores using existing methods.

o Flipout gives unbiased stochastic gradients.

e Flipout is guaranteed to have smaller variance than shared 107 o
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