

Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches Yeming Wen^{†‡}, Paul Vicol^{†‡}, Jimmy Ba^{†‡}, Dustin Tran^{*,}, Roger Grosse^{†‡} [†]University of Toronto [‡]Vector Institute ^{*}Google [•]Columbia University

Motivation

- Stochastic weights are used in many settings:
- Regularization (DropConnect)
- Training BNNs (Gaussian perturbations)
- Evolution Strategies
- Exploration in reinforcement learning
- Due to the large number of weights, it is very expensive to compute and store separate weight perturbations for every example in a mini-batch.
- All examples in a mini-batch typically share the same weight perturbation, thereby limiting the variance reduction effect of large mini-batches.

Summary

- We developed a method called Flipout that allows us to sample pseudo-independent weight perturbations efficiently for each example in a mini-batch.
- Flipout decorrelates the gradients between examples and achieves a 1/N variance reduction effect in practice.
- Flipout applies to any perturbation distribution that factorizes by weight and is symmetric around 0.
- Flipout speeds up training neural networks with multiplicative Gaussian perturbations, is effective at regularizing LSTMs, and enables us to vectorize evolution strategies.

Theoretical Results

- Flipout gives unbiased stochastic gradients.
- Flipout is guaranteed to have smaller variance than shared perturbations.

Independent:
$$\frac{\alpha}{N}$$
 $\alpha = \stackrel{\text{variance of grading on individual expansion on indinit expans$

Method

adients examples om sampling r

rom sampling

• To vectorize these computations, we define matrices R and Swhose rows correspond to the random sign vectors r_n and s_n for all examples in the mini-batch. Let X denote the batch activations in one layer of a neural net. The next layer's activations are given by:

$$Y = \phi \left(X \overline{W} + \left((X \circ S) \widehat{\Delta W} \right) \circ R \right).$$

where ϕ denotes the activation function.

Variance Reduction

• Flipout achieves the ideal linear variance reduction with increasing mini-batch size for FC-NNs, CNNs, and RNNs.

Dotted: shared perturbations. Solid: flipout

$$\Delta W_2 = \widehat{\Delta W} \circ \mathbf{r}_2 \mathbf{s}_2^{\mathsf{T}}$$

LSTM Regularization

Model

Unregularized LSTM Semeniuta (2016) Zoneout (2016) Gal (2016) Mult. Gauss. (ours) Mult. Gauss + Flipou

Large Batch Training

speedup overall.

Figure: MNIST training using Bayes By Backprop with batch size 8192

Vectorizing Evolution Strategies

• Character-level Penn Treebank: Flipout achieves the best reported results for a 1-layer, 1000 hidden unit architecture.

	Valid	Test
	1.468	1.423
	1.337	1.300
	1.306	1.270
	1.277	1.245
	1.257	1.230
out (ours)	1.256	1.227

• Flipout converges in \sim 3x fewer iterations than shared perturbations and is $\sim 2x$ as expensive, yielding a 1.5x

• FlipES is as sample-efficient as using fully-independent perturbations. One GPU with Flipout can handle the same throughput as at least 40 CPU cores using existing methods.