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Motivation

•Stochastic weights are used in many settings:
•Regularization (DropConnect)
•Training BNNs (Gaussian perturbations)
•Evolution Strategies
•Exploration in reinforcement learning

•Due to the large number of weights, it is very expensive to
compute and store separate weight perturbations for every
example in a mini-batch.

•All examples in a mini-batch typically share the same weight
perturbation, thereby limiting the variance reduction effect of
large mini-batches.

Summary

•We developed a method called Flipout that allows us to
sample pseudo-independent weight perturbations efficiently
for each example in a mini-batch.

•Flipout decorrelates the gradients between examples and
achieves a 1/N variance reduction effect in practice.

•Flipout applies to any perturbation distribution that
factorizes by weight and is symmetric around 0.

•Flipout speeds up training neural networks with multiplicative
Gaussian perturbations, is effective at regularizing LSTMs,
and enables us to vectorize evolution strategies.

Theoretical Results

•Flipout gives unbiased stochastic gradients.

•Flipout is guaranteed to have smaller variance than shared
perturbations.
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•To vectorize these computations, we define matrices R and S
whose rows correspond to the random sign vectors rn and sn
for all examples in the mini-batch. Let X denote the batch
activations in one layer of a neural net. The next layer’s
activations are given by:

Y = φ
(
XW +

(
(X ◦ S)∆̂W

)
◦ R
)
.

where φ denotes the activation function.

Variance Reduction

•Flipout achieves the ideal linear variance reduction with
increasing mini-batch size for FC-NNs, CNNs, and RNNs.
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ConVGG on CIFAR-10 LSTM on Penn Treebank

Dotted: shared perturbations. Solid: flipout

LSTM Regularization

•Character-level Penn Treebank: Flipout achieves the best
reported results for a 1-layer, 1000 hidden unit architecture.

Model Valid Test
Unregularized LSTM 1.468 1.423
Semeniuta (2016) 1.337 1.300
Zoneout (2016) 1.306 1.270
Gal (2016) 1.277 1.245
Mult. Gauss. (ours) 1.257 1.230
Mult. Gauss + Flipout (ours) 1.256 1.227

Large Batch Training

•Flipout converges in ∼3x fewer iterations than shared
perturbations and is ∼2x as expensive, yielding a 1.5x
speedup overall.
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Figure: MNIST training using Bayes By Backprop with batch size 8192

Vectorizing Evolution Strategies

•FlipES is as sample-efficient as using fully-independent
perturbations. One GPU with Flipout can handle the same
throughput as at least 40 CPU cores using existing methods.
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