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Exact best-response w™(\)

e Hyperparameters such as architecture choice, data
augmentation, and dropout are crucial for neural net
generalization, but difficult to tune.

Approximate best-response wWy(A) — — —Hyperparameterdistrlibution p(A|o) ° STNS dISCOVEF hyperparameter tra_]eCtOFIeS Wthh can
' outperform fixed hyperparameters.

e For a single dropout rate, STNs implement a curriculum with
a gradually increasing dropout probability.

o Grid search, random search, and Bayesian optimization treat

hyperparameter tuning as a black-box problem, which does R A: o T he same trajectory is followed regardless of the initial

not scale to high-dimensional hyperparameters. hyperparameter value.

o Just right — the gradient of the approximation will match

o Hyperparameter tuning is a bilevel optimization problem: that of the best-response. Method Val Test =
: : . . . . = 0.68 (Fixed 85.83 83.19 IS H
A\ = arg)\mm Ly(A,w () st. wi(A) = arg min L7(A,W) o Too wide — the hypernetwork may be insufficiently flexible prN(Oﬁ&(UIieO).%) oF 87 82 90 45:
. . . . to model the best-response, and the gradients will not match. p=0.68+0.1sin(kw) 85.29 82.15 S — Init=0.05
» We approximate the best-response function w*(\) with a N " ot il e b p = 0.78 (Converged STN) 89.65 86.90  Sos =03
hypernetwork wy(A), called a Self-Tuning Network (STN). * foo small — the hypernetwork will match the best-response STN (Ours) 82.58 79.02 5, — hnit=0.7
at the current hyperparameter, but may not be locally Following STN Trajectory 82.87 79.93 s |/ — Init=0.9
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o We re-parameterize the hyperparameter A to lie in IR and use

e We propose a compact architecture for approximating neural noise distribution p(€lo’) = N (0, o). Real-World Datasets
net best-responses, that can be used as a drop-in PTR CIEAR-10
replacement for existing deep Iearning modules. Hypernetwork Best-Response Architecture Method Val Perplexity Test Perplexity Val Loss Test Loss
o Our training algorithm alternates between approximating the Rairc::r:esagg':ch gzzgi gizig 8:;3‘1‘ 8322
best-response around the current hyperparameters and Bayesian Optimization 72.13 69.29 0.636 0.651
optimizing the hyperparameters with the approximate >TN 70.30 b7.68 0.575 0.576
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Self-Tuning Network (STN) Training Algorithm » We scale and shift the network's hidden units (= the rows of P20 20k a0k 6ok aok 020k a0k 60k B0k 100k
Ime (S
weights and biases) by an amount which depends on our - - -
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