
Self-Tuning Networks for Hyperparameter Optimization
Matthew MacKay∗, Paul Vicol∗, Jon Lorraine, David Duvenaud, Roger Grosse

University of Toronto & Vector Institute

Motivation

•Hyperparameters such as architecture choice, data
augmentation, and dropout are crucial for neural net
generalization, but difficult to tune.

•Grid search, random search, and Bayesian optimization treat
hyperparameter tuning as a black-box problem, which does
not scale to high-dimensional hyperparameters.

•Hyperparameter tuning is a bilevel optimization problem:

λ∗ = arg min
λ
LV (λ,w∗(λ)) s.t. w∗(λ) = arg min

w
LT(λ,w)

•We approximate the best-response function w∗(λ) with a
hypernetwork wφ(λ), called a Self-Tuning Network (STN).

Summary

•We propose a compact architecture for approximating neural
net best-responses, that can be used as a drop-in
replacement for existing deep learning modules.

•Our training algorithm alternates between approximating the
best-response around the current hyperparameters and
optimizing the hyperparameters with the approximate
best-response.

•This yields a gradient-based algorithm that is (1)
computationally inexpensive, (2) can optimize all
regularization hyperparameters including discrete
hyperparameters, and (3) scales to large NNs.

•Our approach discovers hyperparameter trajectories that can
outperform fixed hyperparameter values.

Self-Tuning Network (STN) Training Algorithm

Initialize: Hypernetwork parameters φ, hyperparameters λ
while not converged do

for t = 1, . . . ,Ttrain do
ε ∼ p(ε|σ)
φ← φ− α1∇φ [LT(λ + ε, ŵφ(λ + ε))]

for t = 1, . . . ,Tvalid do
ε ∼ p(ε|σ)
L̂V (λ,σ)← LV (λ + ε, ŵφ(λ + ε))− τH[p(ε|σ)]

(λ,σ)← (λ,σ)− α2∇λ,σ

[
L̂V (λ,σ)

]

Sampling Hyperparameters

Legend: Exact best-response Approximate best-response Hyperparameter distribution

•Just right → the gradient of the approximation will match
that of the best-response.

•Too wide → the hypernetwork may be insufficiently flexible
to model the best-response, and the gradients will not match.

•Too small → the hypernetwork will match the best-response
at the current hyperparameter, but may not be locally
correct.

•We re-parameterize the hyperparameter λ to lie in R and use
noise distribution p(ε|σ) = N (0,σ).

Hypernetwork Best-Response Architecture

Matmul Add

Construct -dependent mask

Gate the hidden state

Matmul

Construct -dependent masks

Gate the hidden state

Matmul

Matmul

Matmul

+ +

Matmul

Construct -dependent masks

Gate the hidden state
Matmul

Matmul

Matmul

+ + +

+

Matmul
Construct -dependent scaling factors

Gate the hidden state

Matmul

Matmul

+

*omitting biases

•We scale and shift the network’s hidden units (≡ the rows of
weights and biases) by an amount which depends on our
hyperparameters:

Ŵφ(λ) = Wshift + (Uλ)�row Wscale

b̂φ(λ) = bshift + (Cλ)�row bscale

•Memory efficient (roughly 2x no. of parameters) and scales
well to high dimensions.

Hyperparameter Trajectories

•STNs discover hyperparameter trajectories which can
outperform fixed hyperparameters.

•For a single dropout rate, STNs implement a curriculum with
a gradually increasing dropout probability.

•The same trajectory is followed regardless of the initial
hyperparameter value.

Method Val Test

p = 0.68 (Fixed) 85.83 83.19
p ∼ N (0.68, σ = 0.05) 85.87 82.29
p = 0.68 + 0.1 sin(kπ) 85.29 82.15

p = 0.78 (Converged STN) 89.65 86.90
STN (Ours) 82.58 79.02

Following STN Trajectory 82.87 79.93

Comparing hyperparameter trajectories 0 5k 10k 15k 20k 25k
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 D

ro
po

ut
 R

at
e

Init=0.05
Init=0.3
Init=0.5
Init=0.7
Init=0.9

Real-World Datasets

PTB CIFAR-10

Method Val Perplexity Test Perplexity Val Loss Test Loss

Grid Search 97.32 94.58 0.794 0.809
Random Search 84.81 81.46 0.921 0.752

Bayesian Optimization 72.13 69.29 0.636 0.651
STN 70.30 67.68 0.575 0.576

Final validation/test performance on PTB and CIFAR-10

•CNN time comparison

0 20k 40k 60k 80k
Time (s)

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Be
st

 V
al

 L
os

s

Grid
Random
BayesOpt
STN

• LSTM time comparison

0 20k 40k 60k 80k 100k
Time (s)

70
80
90

100
110
120
130
140

Be
st

 V
al

 P
er

pl
ex

ity

Grid
Random
BayesOpt
STN

•Hyperparameter trajectories for LSTM tuning

0 20k 40k 60k 80k
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Dr
op

ou
t R

at
e

Output
Input
Hidden
Embedding
Weight

0 20k 40k 60k 80k
Iteration

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Va
lu

e

Alpha
Beta

