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Motivation

•Bayesian neural networks (BNNs) are a principled way to
reason about uncertainty.

•MCMC methods allow us to sample from the posterior, but
have high storage cost.

Summary

•We introduce a framework called Adversarial Posterior
Distillation (APD) that uses a Generative Adversarial
Network (GAN) to model the BNN posterior.

•We show that APD performs as well as the original posterior
samples in the following standard testbeds for BNNs while
using less storage:
•Anomaly detection
•Active Learning (exploration)
•Defense against adversarial attacks

•We analyze the suitability of using GANs for APD.

Background

•Stochastic Gradient Langevin Dynamics (SGLD) is an
MCMC method that works with mini-batches:
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•GANs can sample from rich posterior distributions. We used
the WGAN with gradient penalty (WGAN-GP).

Method

Algorithm Offline APD Distillation

1: Sample {θt}Tt=1 using MCMC updates, where T denotes
the number of updates.

2: Optimize G with WGAN-GP loss using {θt}Tt=1 as real data.

•Online algorithm has sampling and GAN updates interleaved

Method (Cont.)
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Toy Example

•Problem Setup: Classify
mixture of 2 Gaussians

•The deterministic
network has a hard
decision boundary, while
SGLD is uncertain away
from data.

•APD gradually learned
to model SGLD.

Anomaly Detection

•Task: train only on in-distribution data (i.e. MNIST), and
evaluate detection of out-of-distribution data.

•Model: fully connected neural network (784-400-400-10)

Dataset SGD MC-Dropout SGLD APD (Ours)

Det. area under ROC PR+ PR- ROC PR+ PR- ROC PR+ PR- ROC PR+ PR-

VR

notMNIST 64.2 67.6 54.4 88.0 87.2 82.1 98.1 97.8 98.3 97.8 97.4 98.1
OmniGlot 84.2 84.9 78.7 91.5 90.8 90.3 99.0 98.8 99.1 98.8 98.6 99.1
CIFAR10bw 61.4 66.1 52.2 90.1 88.5 86.5 97.4 97.0 97.5 96.9 96.5 96.7
Gaussian 67.3 70.2 57.4 91.3 89.8 89.0 99.6 99.6 99.7 99.6 99.5 99.6
Uniform 85.4 80.7 85.8 93.6 91.2 94.8 99.8 99.8 99.9 99.8 99.7 99.8

•VR stands for variations-ratio

Why GANs? / Storage Savings

•Anomaly detection with increasing
number of GMM components
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•With APD, the storage cost (i.e.,
generator size) is fixed

101 102 103

Number of Samples
94.0
94.5
95.0
95.5
96.0
96.5
97.0
97.5
98.0

AU
RO

C 
(/1

00
)

20dim APD
SGLD
SGLD 50
SGLD 100

Active Learning

•For BNNs, active learning using entropy was able to learn
faster than random acquisition.
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Adversarial Example Detection - MNIST

•We measured the AUROC for FGSM and PGD adversaries
under each source model.

• ’Source’ refers to the
network used to
generate attacks

•Here we used
approximate model
variance, U(x):

Source Attack
Type

MC-
Drop

SGLD Ours

MC-Drop
FGSM 89.53 94.01 91.70
PGD 88.37 93.95 91.63

SGLD
FGSM 54.99 83.76 75.93
PGD 56.91 84.98 82.80

Ours
FGSM 54.51 83.05 86.02
PGD 54.98 88.01 93.15
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