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● When the inner or outer problem is overparameterized, there are many equally good 
solutions, so the argmins are not unique

○ The optimization dynamics can lead to implicit regularization effects

● We show that behavior depends to a surprising degree on choices such as the algorithm 
and hypergradient approximation used



● Exactly computing a best-response or its Jacobian is expensive
○ We typically approximate        or      or both

● Common to approximate the best-response via truncated unrolls of the inner problem:

Computing the Response Jacobian

● The exact inverse Hessian is intractable to compute for large networks; two common 
approximations involve: 1) using truncated conjugate gradient 
(CG)~\cite{pedregosa2016hyperparameter}, and 2) using the truncated Neumann 
series~\cite{liao2018reviving,lorraine2020optimizing}

● The inverse Hessian is intractable to compute for large networks.
○ One option: use truncated Neumann series to approximate the inverse Hessian

response 
Jacobian



● The two main ways to compute the response Jacobian are:
1. Differentiation through unrolling (a.k.a. iterative differentiation)

2. Implicit differentiation, applicable when we are at the converged solution to the inner problem:

● Exactly computing a best-response or its Jacobian is expensive
○ We typically approximate        or      or both

● Common to approximate the best-response via truncated unrolls of the inner problem:

Computing the Response Jacobian

● The exact inverse Hessian is intractable to compute for large networks; two common 
approximations involve: 1) using truncated conjugate gradient 
(CG)~\cite{pedregosa2016hyperparameter}, and 2) using the truncated Neumann 
series~\cite{liao2018reviving,lorraine2020optimizing}

● The inverse Hessian is intractable to compute for large networks.
○ One option: use truncated Neumann series to approximate the inverse Hessian

Can use truncated Neumann series approximation
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Jacobian



● Cold-start: re-initialize the inner parameters and run the inner optimization to 
convergence each time we compute the gradient for the outer parameters

○ Impractical due to the computational expense of full inner optimization

Cold-Start and Warm-Start Bilevel Optimization

Add visualization of the
Data without any fit

● Warm-start: jointly optimize the inner and outer parameters in an online fashion, e.g., 
alternating gradient steps with their respective objectives

○ The optimization dynamics can lead to an implicit regularization effect

while True:

out_params = outer_step()

in_params = init_inner()

while not converged:

in_params = inner_step()

while True:

out_params = outer_step()

in_params = inner_step()



● We focus on dataset distillation as the setup for our toy tasks:

Dataset Distillation
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Data without any fit
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“Validation” loss on 
the original dataset

Model params “Training” loss on 
the synthetic data

Training a model on 
the synthetic data 
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● The outer objective is only used directly to update the outer variables

It seems intuitive that all of the information about the outer objective is compressed into 
the outer variables.



Warm-Start Phenomena
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● It seems intuitive that information about the outer objective is compressed into the outer variables
○ We show that this is not the case when the inner problem is overparameterized

● Consider warm-start optimization to jointly optimize a model and 2 learned datapoints (1 per class)
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Warm-Start Phenomena

Add visualization of the
Data without any fit

Training on the data directly

Warm-start joint optimization Training from scratch on final pointsOriginal dataset

Class 0Class 1

● It seems intuitive that information about the outer objective is compressed into the outer variables
○ We show that this is not the case when the inner problem is overparameterized

● Consider warm-start optimization to jointly optimize a model and 2 learned datapoints (1 per class)

● Takeaway: A surprising amount of information about the outer objective can leak to 
the inner parameters, even when the outer parameters are low-dimensional
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Intuition for Cold-Start and Warm-Start Behavior
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● Cold-start always projects from the origin 
onto the solution set for the current datapoint

● Warm-start projects from the current weights 
onto the solution set

○ By successive projection between solution 
sets, the inner parameters will converge to 
the intersection of the solution sets, yielding 
inner params that perform well for multiple 
outer params simultaneously

○ Note that we do not necessarily converge to 
the optimal validation loss



● Anti-distillation: more learned datapoints than original dataset examples
● The quality of hypergradient approximations induces a trade-off between the inner and outer 

parameter norms—e.g., we can achieve the good performance for the outer objective by either 
making larger updates to the inner or the outer parameters

Outer Overparameterization: Anti-Distillation
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Goal: Learn y-coords of 
the synthetic points
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● We can formalize warm-started joint optimization by considering a proximally 
regularized inner objective:

Proximal Inner Objective

Add visualization of the
Data without any fit

● We define notions of cold-start and warm-start equilibria, which correspond to different 
solutions we obtain with different algorithms



●

Revisiting Overparam Bilevel Solutions
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(a bit more complicated)

Original Data



● In overparameterized bilevel optimization, the inner and outer problems may admit non-unique 
solutions

● We discussed different optimization algorithms: warm-start and cold-start

● We introduced synthetic tasks illustrating the effects of hypergradient approximations and 
overparameterization in the inner and outer problems

○ Distillation & anti-distillation

● We provided evidence for a trade-off in the norms of inner and outer parameters, that depends on the 
hypergradient approximation used

Summary

Add visualization of the
Data without any fit



Thank you!


