
An Implementation of Consistency-Based

Multi-Agent Belief Change using ASP

Paul Vicol1, James Delgrande1, and Torsten Schaub2

1 Simon Fraser University
Burnaby B.C, Canada V5A 1S6
pvicol@sfu.ca, jim@cs.sfu.ca

2 Universität Potsdam
August-Bebel-Strasse 89
14482 Potsdam, Germany

torsten@cs.uni-potsdam.de

Abstract. This paper presents an implementation of a general frame-
work for consistency-based belief change using Answer Set Programming
(ASP). We describe Equibel, a software system for working with belief
change operations on arbitrary graph topologies. The system has an ASP
component that performs a core maximization procedure, and a Python
component that performs additional processing on the output of the
ASP solver. The Python component also provides an interactive inter-
face that allows users to create a graph, set formulas at nodes, perform
belief change operations, and query the resulting graph.

Keywords: belief change, belief merging, answer set programming, python

1 Introduction

We present an implementation of the consistency-based framework for multi-
agent belief change discussed in [2]. In a network of connected agents, each with
a set of beliefs, it is important to determine how the beliefs of the agents change
as a result of incorporating information from other agents. We represent such a
network by an undirected graph G = hV,Ei, where vertices represent agents and
edges represent communication links by which agents share information. Associ-
ated with each agent is a belief base expressed as a propositional formula. Beliefs
are shared among agents via a maximization procedure, wherein each agent in-
corporates as much information as consistently possible from other agents.

Before delving into the implementation, we introduce a motivating example:

Example 1. Consider a group of drones searching for missing people in a build-
ing. Each of the drones has some initial beliefs regarding where the missing
people might be. Drone 1 believes that there is a person in the bookstore, as
well as one in the atrium; drone 2 believes that there cannot be missing people in
both the atrium and the bookstore; drone 3 just believes that there is a person
in the cafeteria. The drones communicate with one another, and each is willing

2

to incorporate new information that does not conflict with its initial beliefs. Our
goal is to determine what each drone will believe following the communication.

We have developed a software system called Equibel that can be used to
simulate the above scenario, and determine where each drone would look for the
missing people. More generally, Equibel allows for experimentation with belief
sharing in arbitrary networks of agents. It uses Answer Set Programming (ASP)
to perform the maximization step, and Python to manage the solving process
and provide programmatic and interactive interfaces. The software is available
online at www.github.com/asteroidhouse/equibel.

2 Related Work

Many methods have been proposed to deal with belief change involving multiple
sources of information. Classical approaches to belief merging, such as [6] and
[7], start with a set of belief bases and produce a single, merged belief base. Our
approach di↵ers in that we update multiple belief bases simultaneously.

The BReLS system [8] implements a framework for integrating information
from multiple sources. In BReLS, pieces of information may have di↵erent de-
grees of reliability and may be believed at di↵erent discrete time points. Revision,
update, and merging operations are each restrictions of the full semantics. The
REV!GIS system [10] deals with belief revision in the context of geographic infor-
mation systems, using information in a certain region to revise adjacent regions.
There have been many approaches to iterative multi-agent belief sharing, in-
cluding the iterated merging conciliation operators introduced in [4], and Belief
Revision Games (BRGs) introduced in [9]. BRGs are ways to study the evolution
of beliefs in a network of agents over time. While sharing a graph-based model,
our framework di↵ers from BRGs in two ways. First, we use a consistency-based

approach, which is distinct from any of the revision policies in [9]. Second, we
describe a “one-shot” method for belief sharing, rather than an iterated method.

The consistency-based framework we employ here has been developed in a
series of papers, including [1], [2], and [3].

3 The Consistency-Based Belief Change Framework

We work with a propositional language LP , defined over an alphabet P =
{p, q, r, . . .} of propositional atoms, using the connectives ¬,^,_,! and ⌘ to
construct formulas in the standard way. For i � 0, we define Pi =

�
pi | p 2 P

containing superscripted versions of the atoms in P, and define Li to be the cor-
responding language. We denote the original, non-superscripted language by L0.
We denote formulas by Greek letters ↵,�, etc. Given a formula ↵i 2 Li, ↵j 2 Lj

is the formula obtained by replacing all occurrences of pi 2 Pi by pj 2 Pj . For
example, if ↵1 = (p1 ^ ¬q1) ! r1, then ↵2 = (p2 ^ ¬q2) ! r2.

Our implementation uses the maximization approach to belief sharing de-
scribed in [2]; here we recall the terminology and notation for maximal equiva-
lence sets, and we refer the reader to [2] for more details.

3

Definition 1 (G-scenario). Let G = hV,Ei be a graph with |V | = {1, 2, . . . , n}.
A G-scenario ⌃G is a vector of formulas h'1, . . . ,'ni. The notation ⌃G[i] de-
notes the ith component, 'i.

An agent starts with some initial beliefs that she does not want to give up, and
then “includes” as much information as consistently possible from other agents.
This is done as follows. Each agent expresses her beliefs in a distinct language,
such that the languages used by any two agents are isomorphic. Specifically,
agent i expresses her beliefs as formulas of the language Li. Because the agents’
languages are disjoint,

S
1in '

i
i is trivially consistent. For each agent, we want

to find out what “pieces” of beliefs from other agents she can incorporate. To do
this, we assert that the languages of adjacent agents agree on the truth values of
corresponding atoms as much as consistently possible. The equivalences between
the atoms of agents i and j tell us what those agents can and cannot agree on,
and provide a means to “translate” formulas between those agents’ languages.
If agents i and j cannot agree on the truth value of p, then we can translate
formulas from Li to Lj by replacing pi by ¬pj . This process is formalized below.

Definition 2 (Equivalence sets, Fits, Maximal fits). Let G = hV,Ei be a

graph and P be an alphabet.

– An equivalence set EQ is a subset of {pi ⌘ pj | h{i, j}, pi 2 E ⇥ P}.
– Given a G-scenario ⌃G = h'1, . . . ,'ni, a fit for ⌃G is an equivalence set

EQ such that EQ [
Sn

i=1 '
i
i is consistent.

– A maximal fit for ⌃G is a fit EQ such that for all fits EQ0 � EQ, we have

that EQ0 [
Sn

i=1 '
i
i is inconsistent.

Let ⌃G = h'1, . . . ,'ni be a G-scenario and F be the set of maximal fits for
⌃G. Informally, the completion of ⌃G, denoted ⇥(⌃G), is a G-scenario ⌃0

G =
h'0

1, . . . ,'
0
ni consisting of updated formulas for each agent following a belief

sharing procedure. [2] gives both semantic and syntactic characterizations of the
completion. Here we state the syntactic characterization, based on translation.

Definition 3 (Substitution function). Let G = hV,Ei be a graph, and EQ
be an equivalence set. Let R⇤

denote the transitive closure of a binary relation

R. Then, for i, j 2 V , we define a substitution function sEQ
i,j : Pi ! {l(pj) |

pj 2 Pj}, where l(pj) is either pj or ¬pj, as follows:

sEQ
i,j (pi) =

⇢
pj : (pi ⌘ pj) 2 EQ

¬pj : {i, j} 2 E⇤, (pi ⌘ pj) /2 EQ

Given a formula ↵i, sEQ
i,j (↵i) is the formula that results from replacing each

atom pi in ↵i by its unique counterpart sEQ
i,j (pi). Thus, sEQ

i,j (↵i) is a translation

of ↵i into the language of agent j, that is consistent with agent j’s initial beliefs.

Proposition 1. Let G = hV,Ei be a graph and ⌃G = h'1, . . . ,'ni be a G-

scenario. Let ⇥(⌃G) = h'0
1, . . . ,'

0
ni be the completion of ⌃G , and let F be the

set of maximal fits of ⌃G. Then, we find '0
j, for j 2 {1, . . . , n}, as follows:

'0
j ⌘

W
EQ2F

⇣V
{i,j}2E⇤(s

EQ
i,j ('i

i))
0
⌘

4

4 System Design

Equibel is split into two architectural layers: an ASP layer, which performs
the core maximization procedure, and a Python layer, which performs post-
processing of answer sets and provides programmatic and interactive user inter-
faces to experiment with belief sharing on custom graphs. Equibel provides a
Python package (equibel) that allows users to perform belief change operations
in programs, and a user-friendly command-line interface (CLI) that allows for
real-time experimentation. The CLI allows users to enter commands to create
agents, edges, and formulas, execute belief change operations and query the re-
sulting graph. A query might ask what a particular agent believes, or what the
common knowledge is (the disjunction of all agents’ beliefs).

There are three major stages to computing the completion of a G-scenario:
1) finding maximal sets of equivalences between atoms of adjacent agents; 2)
translating beliefs between the languages of adjacent agents; and 3) combining
beliefs that result from di↵erent maximal equivalence sets. The first two steps
are done in ASP, while the third is done in Python.

The ASP layer consists of a set of logic programs that can be combined
in di↵erent ways to achieve di↵erent functionality. The core of Equibel is the
eq sets.lp logic program that finds maximal sets of equivalences of the form
pi ⌘ pj between atoms at neighbouring agents i and j. We use the logic program
translate.lp to translate formulas between the languages of connected agents
based on the equivalence sets. Each optimal answer set gives the new information
incorporated by each agent, based on a specific maximal EQ set. We use the ASP
grounder/solver clingo, from the Potsdam Answer Set Solving Collection [5].

The Python component combines formulas that occur in di↵erent answer sets.
The Python clingo interface also manages the solving state, by loading specific
combinations of logic modules. This allows the system to find either cardinality-
or containment-maximal EQ sets, and potentially perform iterated belief sharing.
We also designed a file format for specifying belief change problems, called the
Belief Change Format (BCF). This is an extension of the DIMACS graph format,
and is a standard for communication within our system.

5 ASP Implementation

Encoding Graphs Encoding a graph involves creating agents, assigning formulas
to the agents, and setting up connections between the agents. We declare agents
using the node/1 predicate, and declare edges using edge/2. We assign formulas
to agents using formula/2, where the first argument is a formula built using the
function symbols and/2, or/2, implies/2, iff/2, and neg/1, and the second
argument is an integer identifying an agent. For example, we can assign the
formula (p ^ q) _ ¬r to agent 1 with formula(or(and(p,q),neg(r)),1).

Finding Maximal EQ Sets Maximal equivalence sets are found by eq sets.lp,
which: 1) generates candidate equivalence sets; 2) tests the equivalence sets by

5

attempting to find a truth assignment, constrained by the equivalences, that sat-
isfies all agents’ initial beliefs; and 3) optimizes the results to find containment-
or cardinality-maximal sets.

In order to check whether a truth assignment is satisfying, we first break each
formula down into its subformulas. After truth values have been assigned to the
atoms, an agent’s beliefs are built back up from its subformulas; this allows us
to determine whether an assignment models the original beliefs of each agent.
We classify each subformula as either a compound or an atomic proposition:

atom(P,X) :- subform(P,X), not compound_prop(P,X).

atom(P) :- atom(P,_).

Candidate EQ sets are generated by:

{ eq(P,X,Y) : atom(P), edge(X,Y), X < Y }.

The predicate eq(P,X,Y) expresses that PX ⌘ PY . The condition X < Y
halves the search space over edges; this is justified because edges are undirected.
After we generate a candidate EQ set, we check whether it is possible to assign
truth values to all atoms, restricted by the equivalences, such that the agents’
original formulas are satisfied. We assign a truth value to each atom, with the
constraint that atoms linked by an equivalence must have the same truth value:

1 { truth_value(P,X,true), truth_value(P,X,false) } 1 :-

atom(P), node(X).

:- eq(P,X,Y), truth_value(P,X,V), truth_value(P,Y,W), V != W.

Now we build up the original formulas from their subformulas, to see if the
assignment is satisfying. A sample of the code used to build up the original
formulas starting from the atoms is shown below:

sat(F,X) :- F = and(A,B), sat(A,X), sat(B,X),

subform(F,X), subform(A,X), subform(B,X).

For an EQ set to be acceptable, it must be possible to find a truth assignment
that satisfies all the original formulas. Thus, we introduce the constraint:

:- formula(F,X), not sat(F,X).

There are two types of maximality, each requiring a di↵erent program state-
ment and solving configuration. The standard #maximize statement in clingo

finds EQ sets that are maximal with respect to cardinality. To find containment-

maximal EQ sets, however, we use a domain-specific heuristic:

_heuristic(eq(P,X,Y), true , 1) :- atom(P), edge(X,Y), X < Y.

The true heuristic modifier tells the solver to decide first on eq atoms, and
to set them to true. The solver initially makes all eq atoms true, and then
“whittles down” the set, producing containment-maximal sets.

For our one-shot approach to belief sharing, we take the transitive closure
of the eq/3 predicates. This allows for an agent to learn from other agents
throughout the graph, not just from its immediate neighbours. The module
translate.lp translates formulas between the languages of connected agents,

6

and outputs new formula/2 predicates that indicate the new information ob-
tained by an agent from its neighbours.

Consider an equivalence set EQ and an agent i. The new belief of i, based
on EQ, is the conjunction of translated beliefs from all agents connected to i.
But we may have multiple maximal equivalence sets, each of which represents an
equally plausible way to share information. Thus, we combine beliefs that result
from di↵erent equivalence sets by taking their disjunction. Both of these steps
are performed in Python, using the output of translate.lp.

We now look at how the system works on our opening example. Let the
atomic propositions a, b, and c denote the facts that there are missing people
in the atrium, bookstore, and cafeteria, respectively. The network of drones is
represented by a complete graph on three nodes, numbered 1 to 3, and the
associated G-scenario is ⌃G = ha ^ b,¬a _ ¬b, ci. Solving with eq sets.lp, we
find four maximal EQ sets. Based on the first set, {a1 ⌘ a2, a1 ⌘ a3, a2 ⌘
a3, b1 ⌘ b3, c1 ⌘ c2, c1 ⌘ c3, c2 ⌘ c3}, the new beliefs of the drones would be
ha^ b^ c, a^¬b^ c, a^ b^ ci. Taking the disjunction of formulas obtained from
di↵erent EQ sets, the final beliefs of the drones are ha^b^c, (a ⌘ ¬b)^c, (a_b)^ci.

6 Expressing Revision and Merging

The equibel Python module allows users to perform belief change operations
such as revision and merging, without explicitly creating graph topologies. For
these operations, the user only needs to specify formulas representing belief bases
to be operated on, and the system constructs an implicit graph topology, finds
the completion, and returns either a formula of a specific agent in the completion,
or the invariant knowledge. In this section, we show how belief revision and two
types of merging are expressed in our framework.

For belief revision, we need to consistently introduce a new belief ↵ into
a belief base K, while retaining as much of K as possible. Belief revision can
be modeled as a two-agent graph G = hV,Ei, with V = {1, 2}, E = {{1, 2}},
and ⌃G = hK,↵i. Through belief sharing, agent 2 will incorporate as much
information from agent 1 as possible, while maintaining consistency with ↵. The
belief of agent 2 in the completion, ⇥(⌃G)[2], is the result of the revision, K ⇤↵.
This corresponds to consistency-based revision, as defined in [1].

Turning to belief merging, multiple, potentially mutually inconsistent, bodies
of knowledge need to be combined into a coherent whole. Two approaches to
merging are described in [3]. The first approach is a generalization of belief
revision called projection. Given a multiset K = hK1, . . . ,Kni and a constraint
µ, the contents of each belief base Ki are projected onto a distinguished belief
base which initially contains just µ. This is expressed in our framework using a
star graph, such that the central agent initially believes µ, and incorporates as
much information as possible from each of its neighbours. Formally, G = hV,Ei,
where V = {0, 1, . . . , n}, E = {{0, i} | i 2 V \ {0}}, and ⌃ = hµ,K1, . . . ,Kni.
The merged belief base�µ(K) is the belief of the central agent in the completion,
⇥(⌃)[0]. The second approach to merging, called consensus merging, involves

7

“pooling” together information from the belief bases. Let G be a complete graph
and let ⌃ be a G-scenario. Information is pooled by taking the invariant of the
completion ⇥(⌃) = h'0

1, . . . ,'
0
ni, so that �(K) =

Wn
i=1 '

0
i.

7 Conclusion

In this paper, we introduce Equibel, a software system for experimenting with
consistency-based multi-agent belief sharing. We model networks of communi-
cating agents using arbitrary undirected graphs, where each node is associated
with a belief base represented by a propositional formula. Each agent shares
information with its neighbours, and learns as much as possible from connected
agents, while not giving up her initial beliefs. Belief sharing is carried out via
a global procedure that maximizes similarities between belief bases of adjacent
agents. We describe Equibel’s architecture, examine how maximal equivalence
sets are found using ASP, and look at how Equibel handles belief revision and
merging by constructing implicit graph topologies. Other operations, such as be-
lief extrapolation, can also be expressed within this framework. We are working
on expanding the system to support iterated change and agent expertise.

Acknowledgements

Financial support was gratefully received from the Natural Sciences and Engi-
neering Research Council of Canada.

References

1. J. Delgrande and T. Schaub. A consistency-based approach for belief change.
Artificial Intelligence, 151(1-2):1–41, 2003.

2. J.P. Delgrande, J. Lang, and T. Schaub. Belief change based on global minimisa-
tion. In IJCAI, Hyderabad, India, 2007.

3. J.P. Delgrande and T. Schaub. A consistency-based framework for merging knowl-
edge bases. Journal of Applied Logic, 5(3):459–477, 2006.

4. O. Gauwin, S. Konieczny, and P. Marquis. Iterated belief merging as conciliation
operators. In 7th Int Symp on Logical Formalizations of Commonsense Reasoning,
pages 85–92, Corfu, Greece, 2005.

5. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control:
Preliminary report. volume arXiv:1405.3694v1.

6. S. Konieczny and R. Pino Pérez. Merging information under constraints: A logical
framework. Journal of Logic and Computation, 12(5):773–808, 2002.

7. P. Liberatore and M. Schaerf. Arbitration: A commutative operator for belief
revision. In Proc of 2nd WOCFAI-95, pages 217–228, 1995.

8. P. Liberatore and M. Schaerf. Brels: A system for the integration of knowledge
bases. In Proc 7th Int Conf on Principles of KR&R, pages 145–152, 2000.

9. Nicolas Schwind, Katsumi Inoue, Gauvain Bourgne, Sébastien Konieczny, and
Pierre Marquis. Belief revision games. AAAI, 2015.

10. E. Würbel, R. Jeansoulin, and O. Papini. Revision: An application in the frame-
work of GIS. In Proc 7th Int Conf on Principles of KR&R, pages 505–515, 2000.

