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Traditional Paths to Equivariant Models
● Equivariance to certain transformations can be useful for generalization

○ Note: equivariance includes invariance as a special case
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Traditional Paths to Equivariant Models
● Equivariance to certain transformations can be useful for generalization

○ Note: equivariance includes invariance as a special case

- CNNs are designed to be 
equivariant to translation

- Work from Max Welling’s group 
extends this to other symmetry 
groups (Spherical CNNs, etc.)

Rotation Hue

- “Train in” desired invariances
Manual Architecture Design Data Augmentation

Reflection Brightness

F

F

“cat”

“cat”



Idea: Meta-Learn Equivariances

● The meta-learning approach
○ Learn equivariances from data without needing to design custom task-specific 

architectures
○ Learn to exploit symmetries shared by a collection of tasks, using gradient-based 

meta-learning to learn parameter sharing patterns (which enforce equivariance) 
separately from actual parameter values



Definitions

● Equivariance
○ A function is equivariant to a transformation if transforming the input to the function is 

equivalent to transforming the output
○ Consider a network layer                         
○ Assume we have two representations of a group G where            transforms the input vectors 

and            transforms the output vectors. The layer      is G-equivariant w.r.t these 
transformations if:

● Invariance is a special case of equivariance
○ If                        then we have:

● Symmetry: 

Layer output on the
transformed input

Layer output on the 
original input=

for all



Parameter Sharing Patterns → Equivariance

● A convolutional layer can be viewed as a linear layer with a specific parameter-sharing 
structure:

● Equivariant layers for other transformations, like rotation and reflection, correspond to 
different parameter sharing patterns



Parameter Sharing Patterns → Equivariance

Function composition preserves equivariance, so if we achieve 
equivariance in each individual layer, then the whole network will be 
equivariantActivation

Activation

Linear

Linear

Activation Elementwise nonlinearities (ReLU, sigmoid, tanh) are already 
equivariant to any permutation of the input and output indices, which 
includes translation, reflection, and rotation



Reparameterization

● They propose a representation to encode possible equivariances
● A fully-connected layer                        with weight matrix                     is given by 
● They factorize       as the product of a symmetry matrix      and a vector       of filter params

● Then                             is reshaped into the weight matrix 

● This separates the problem of learning the sharing pattern from the problem of learning 
the filter params

Encodes the pattern by which 
the weights W will “share” the 
filter parameters v

Shared filter parameters



Meta-Learning Equivariances

● For a task                  the inner loop fixes       and only updates       using the task 
training data:

Meta-Training Time

● The outer loop updates       by computing the loss on the task’s validation data using 
and the task’s validation data:

● (We can also still meta-learn the initialization of the filter parameters      as in MAML)



Meta-Learning Equivariances

● For a task                  the inner loop fixes       and only updates       using the task 
training data:

Meta-Training Time

● The outer loop updates       by computing the loss on the task’s validation data using 
and the task’s validation data:

● (We can also still meta-learn the initialization of the filter parameters      as in MAML)

Meta-Test Time
● For a test task,      is frozen and only the filter params      are updated

○ This enforces meta-learned parameter sharing and improves generalization by reducing the 
number of task-specific inner-loop parameters



A Hybrid Approach

● Some equivariances are useful but expensive to meta-learn, like standard convolutions
● But there may still be symmetries in the data that we wish to discover automatically

● Hybrid approach: some baked-in invariances + some learned ones
○ Can directly reparameterize a standard convolution layer by reshaping vec(W) into a 

convolution filter bank rather than a weight matrix
○ Bakes in translation equivariance, and allows for learning rotation equivariance from data

=+

Learned equivariances 
from data



Experiments

● Synthetic meta-learning problems designed to have certain symmetries including 
translation, rotation, reflection, etc.

● They use meta-learning w/ general architectures not designed around these 
symmetries to see whether each method can automatically meta-learn the 
equivariances

Synthetic Tasks

● Using MSR to encode invariances into the parameter sharing structure, to transfer 
to the test-set tasks more easily

● Evaluated on standard few-shot learning tasks: Omniglot, MiniImageNet

Learning Invariances from Data Augmentation



Learning Invariances from Augmented Data

● Data augmentation can yield invariant models
● In meta-learning settings, we need 

augmented data for each task
○ May not be able to augment data in the 

training set of a meta-test task (e.g., real-world 
robot setting)

● Idea: use MSR to learn invariances from data 
augmentation at training time

○ Encode these invariances into the network 
itself through 

○ Preserve learned invariances on new 
meta-test tasks without needing additional 
data augmentation



Learning Invariances from Augmented Data

● Data augmentation consists of a combination of random rotations, flips, and resizes
● All methods (MAML, ANIL, PN, MSR) can learn invariant features

○ MSR seems to do better “because it enforces learned invariance through its symmetry matrices”



Summary

● MSR is a method for meta-learning equivariance-inducing parameter sharing patterns in 
each layer of a network

● + Sharing patterns reduce the number of task-specific parameters that must be learned in 
the inner loop, and improve generalization

● + Can meta-learn invariances using data augmentation, into the network structure
● - Does not make use of parameter sharing to reduce actual computation (still needs large, 

probably sparse, matrices)
● - Requires a distribution of tasks with shared symmetries

○ Unclear how to discover symmetries quickly for a single task
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