
Meta-Learning Symmetries
By Reparameterization

Paper by: Allan Zhou, Tom Knowles, Chelsea Finn

Slides by: Paul Vicol

Traditional Paths to Equivariant Models
● Equivariance to certain transformations can be useful for generalization

○ Note: equivariance includes invariance as a special case

Rotation HueReflection Brightness

Traditional Paths to Equivariant Models
● Equivariance to certain transformations can be useful for generalization

○ Note: equivariance includes invariance as a special case

- CNNs are designed to be
equivariant to translation

- Work from Max Welling’s group
extends this to other symmetry
groups (Spherical CNNs, etc.)

Rotation Hue

- “Train in” desired invariances
Manual Architecture Design Data Augmentation

Reflection Brightness

F

F

“cat”

“cat”

Idea: Meta-Learn Equivariances

● The meta-learning approach
○ Learn equivariances from data without needing to design custom task-specific

architectures
○ Learn to exploit symmetries shared by a collection of tasks, using gradient-based

meta-learning to learn parameter sharing patterns (which enforce equivariance)
separately from actual parameter values

Definitions

● Equivariance
○ A function is equivariant to a transformation if transforming the input to the function is

equivalent to transforming the output
○ Consider a network layer
○ Assume we have two representations of a group G where transforms the input vectors

and transforms the output vectors. The layer is G-equivariant w.r.t these
transformations if:

● Invariance is a special case of equivariance
○ If then we have:

● Symmetry:

Layer output on the
transformed input

Layer output on the
original input=

for all

Parameter Sharing Patterns → Equivariance

● A convolutional layer can be viewed as a linear layer with a specific parameter-sharing
structure:

● Equivariant layers for other transformations, like rotation and reflection, correspond to
different parameter sharing patterns

Parameter Sharing Patterns → Equivariance

Function composition preserves equivariance, so if we achieve
equivariance in each individual layer, then the whole network will be
equivariantActivation

Activation

Linear

Linear

Activation Elementwise nonlinearities (ReLU, sigmoid, tanh) are already
equivariant to any permutation of the input and output indices, which
includes translation, reflection, and rotation

Reparameterization

● They propose a representation to encode possible equivariances
● A fully-connected layer with weight matrix is given by
● They factorize as the product of a symmetry matrix and a vector of filter params

● Then is reshaped into the weight matrix

● This separates the problem of learning the sharing pattern from the problem of learning
the filter params

Encodes the pattern by which
the weights W will “share” the
filter parameters v

Shared filter parameters

Meta-Learning Equivariances

● For a task the inner loop fixes and only updates using the task
training data:

Meta-Training Time

● The outer loop updates by computing the loss on the task’s validation data using
and the task’s validation data:

● (We can also still meta-learn the initialization of the filter parameters as in MAML)

Meta-Learning Equivariances

● For a task the inner loop fixes and only updates using the task
training data:

Meta-Training Time

● The outer loop updates by computing the loss on the task’s validation data using
and the task’s validation data:

● (We can also still meta-learn the initialization of the filter parameters as in MAML)

Meta-Test Time
● For a test task, is frozen and only the filter params are updated

○ This enforces meta-learned parameter sharing and improves generalization by reducing the
number of task-specific inner-loop parameters

A Hybrid Approach

● Some equivariances are useful but expensive to meta-learn, like standard convolutions
● But there may still be symmetries in the data that we wish to discover automatically

● Hybrid approach: some baked-in invariances + some learned ones
○ Can directly reparameterize a standard convolution layer by reshaping vec(W) into a

convolution filter bank rather than a weight matrix
○ Bakes in translation equivariance, and allows for learning rotation equivariance from data

=+

Learned equivariances
from data

Experiments

● Synthetic meta-learning problems designed to have certain symmetries including
translation, rotation, reflection, etc.

● They use meta-learning w/ general architectures not designed around these
symmetries to see whether each method can automatically meta-learn the
equivariances

Synthetic Tasks

● Using MSR to encode invariances into the parameter sharing structure, to transfer
to the test-set tasks more easily

● Evaluated on standard few-shot learning tasks: Omniglot, MiniImageNet

Learning Invariances from Data Augmentation

Learning Invariances from Augmented Data

● Data augmentation can yield invariant models
● In meta-learning settings, we need

augmented data for each task
○ May not be able to augment data in the

training set of a meta-test task (e.g., real-world
robot setting)

● Idea: use MSR to learn invariances from data
augmentation at training time

○ Encode these invariances into the network
itself through

○ Preserve learned invariances on new
meta-test tasks without needing additional
data augmentation

Learning Invariances from Augmented Data

● Data augmentation consists of a combination of random rotations, flips, and resizes
● All methods (MAML, ANIL, PN, MSR) can learn invariant features

○ MSR seems to do better “because it enforces learned invariance through its symmetry matrices”

Summary

● MSR is a method for meta-learning equivariance-inducing parameter sharing patterns in
each layer of a network

● + Sharing patterns reduce the number of task-specific parameters that must be learned in
the inner loop, and improve generalization

● + Can meta-learn invariances using data augmentation, into the network structure
● - Does not make use of parameter sharing to reduce actual computation (still needs large,

probably sparse, matrices)
● - Requires a distribution of tasks with shared symmetries

○ Unclear how to discover symmetries quickly for a single task

Q/A

