
Reversible Recurrent Neural Networks
Matthew MacKay, Paul Vicol, Jimmy Ba, Roger Grosse

University of Toronto & Vector Institute

Motivation

•RNNs are memory intensive to train
•This limits the flexibility of RNN models that can be trained and the

lengths of sequences we can backpropagate through

•Reversible RNNs are RNNs for which the hidden-to-hidden
transition can be reversed
•Reduce memory usage during training, as hidden states need not be

stored.

Summary

•We show perfectly reversible RNNs are fundamentally limited
since they cannot forget information from their hidden state.

•We provide a scheme for storing a small number of bits in
order to allow perfect reversal with forgetting.

•We introduce the RevGRU and RevLSTM models, which are
reversible analogues of standard the GRU and LSTM

•The reversible models achieve similar performance to the
standard models on language modeling and neural machine
translation, while saving 5–15× activation memory cost

Reversible Recurrent Architectures

•Separate the hidden state h of a RevGRU into two groups, h1

and h2, with updates:

z1, g1 = F (h2, x) h1 ← z1 � h1 + (1− z1)� g1 (1)

z2, g2 = G (h1, x) h2 ← z2 � h2 + (1− z2)� g2 (2)

where F and G are analogous to standard GRU updates and
x is the current input.

•Reversible in exact arithmetic, e.g. reconstruct h2 by
recomputing z2, g2 and using:

h2 ← [h2 − (1− z2)� g2]� 1/z2

• In practice, cannot reconstruct perfectly since forgetting
(multiplication by z) discards information

Impossibility of No Forgetting

h(0)

A

h(3)h(1)

A

B

h(2)

B

C

C

h(3)

C

h(0)h(2)

B

B

h(1)

A

A

C

•Can achieve perfect reconstruction with no memory usage by
removing the forgetting step, but this limits model capability

•Consider the repeat task: repeat each input token on next
timestep
•Unrolling the reverse computation reveals a

sequence-to-sequence computation in which the decoder
must reproduce the input sequence from the final encoder
hidden state
•This becomes infeasible for long sequences

Reversibility with Forgetting

•We allow forgetting and use a buffer to efficiently store
forgotten information
•Neglecting buffer overflow, z = 2−k corresponds to storing exactly k bits
•We limit the amount forgotten by restricting z to lie in an interval (a, 1)

for a > 0

Language Modelling

•Validation perplexities and memory savings on Penn
TreeBank word-level language modeling.

Reversible Model 2 bit 3 bits 5 bits No limit Usual Model No limit

1 layer RevGRU 82.2 (13.8) 81.1 (10.8) 81.1 (7.4) 81.5 (6.4) 1 layer GRU 82.2
2 layer RevGRU 83.8 (14.8) 83.8 (12.0) 82.2 (9.4) 82.3 (4.9) 2 layer GRU 81.5

1 layer RevLSTM 79.8 (13.8) 79.4 (10.1) 78.4 (7.4) 78.2 (4.9) 1 layer LSTM 78.0
2 layer RevLSTM 74.7 (14.0) 72.8 (10.0) 72.9 (7.3) 72.9 (4.9) 2 layer LSTM 73.0

•RevGRU, validation perplexities

0 10 20 30 40 50 60 70
Number of Batches (x1000)

60

70

80

90

100

110

120

130

140

150

Pe
rp

le
xi

ty

1 bit
2 bits
3 bits

5 bits
No limit
GRU

•RevGRU, memory savings

0 10 20 30 40 50 60 70
Number of Batches (x1000)

0

5

10

15

20

25

30

35

M
em

or
y 

Ra
tio

1 bit
2 bits
3 bits

5 bits
No limit

Memory Savings with Attention

...

...

+

...

...

Attention

...

<SOS>

DecoderEncoder

•Standard models use attention over encoder hidden states
•Problematic: Must retain the hidden states in memory to use them

for attention.

•We perform attention over the concatenation of word
embeddings and slices of the encoder hidden states
•Embeddings are computed directly from the input tokens; they don’t

need to be stored.
•Only the hidden state slices that are attended to must be stored.

Neural Machine Translation Experiments

•Performance on the Multi30K dataset for several variants of
attention and restrictions on forgetting.

Model Attention 1 bit 2 bit 3 bit 5 bit No Limit

P M P M P M P M P M

RevLSTM
300H 26.44 1.0 36.10 1.0 37.05 1.0 37.30 1.0 36.80 1.0
Emb 31.92 20.0 31.98 15.1 31.60 13.9 31.42 10.7 31.45 10.1
Emb+20H 36.80 12.1 36.78 9.9 37.23 8.9 36.45 8.1 37.30 7.4

RevGRU
300H 34.86 1.0 33.49 1.0 33.01 1.0 33.03 1.0 33.08 1.0
Emb 28.51 13.2 28.76 13.2 28.86 12.9 27.93 12.8 28.59 12.9
Emb+20H 34.00 7.2 34.41 7.1 34.39 6.4 34.04 5.9 34.94 5.7

•P denotes the test BLEU scores; M denotes the average memory savings of the encoder
during training. 20H denotes a 20-dimensional slice of the hidden state.

•RevLSTM, Emb+20H, validation

0 4000 8000 12000 16000
Number of Batches

6

8

10

12

14

16

Va
l P

er
pl

ex
ity

1 bit
2 bits
3 bits
5 bits
No limit

•RevLSTM, Emb+20H, memory

0 4000 8000 12000 16000
Iteration

0

5

10

15

20

25

30

M
em

or
y 

Ra
tio

Encoder Actual
Decoder Actual
Encoder Optimal
Decoder Optimal


