Unbiased Gradient Estimation in Unrolled Computation Graphs UNIVERSITY OF
with Persistent Evolution Strategies ;«;; TORONTO

Paul Vicol*?3 Luke Metz!, Jascha Sohl-Dickstein®
1Google Research, 2University of Toronto, 3Vector Institute

Motivation & Summary Persistent Evolution Strategies (PES) Influence Balancing

Google

VECTOR INSTITUTE

° Unrol-le-d computation graphs arise in many scenarios - o PES divides the computation graph into a series of truncated unrolls, ® Synthetic task with
o Tr.ammg RNNs, tun.lng hyp.e.rparameters thr.ou.gh unrolled optimization, and performs an ES-based update step after each unroll. 1011 |— TBPTT 1 PES arbitrarily long-term
reinforcement learning, training learned optimizers. PES . . . . TBPTT 10 — UORO dependencies
o C . s to ontimiy fors " ot e g~ decomposes into a sum of sequential gradient estimates, TRPTLT00 -——- RIRL P
urrent approaches to optimizing parameters in such computation 1 . — e lLearn a scalar that has a3
graphs suffer from high variance gradients, bias, slow updates, or large g = g e [(I ® 1" )vec(€)L(O + e)] " positive short-term
memor.y L.lsage. | | | | | T i 9 influence but a negative
e PES eliminates bla.s from these truncations by accumulating correction — _F, Z&L 0, €1,....0:+€) long-term influence
terms over the entire sequence of unrolls. o o Truncated algorithms fail
e PES allows for rapid parameter updates, has low memory usage, is l PES performs similarly to
' | icti e We obtain unbiased gradient estimates from partial unrolls by: :
unbla.sed, a.nd has reas.onal.ale variance characteristics. | Jre oAl Uy t'gl » ” p y 0 1000 5000 3000 RTRL given enough
e PES is unbiased, allowing it to converge to correct solutions that are - [TOL TESELLINE T Particies LELWEEN UnTotis lteration sarticles

2. Accumulating perturbations each particle has experienced over all unrolls.

not found by TBPTT or truncated ES

e |oss surface smoothing induced by PES is beneficial for HO,
overcoming erratic meta-loss surfaces

e The PES algorithm (using antithetic sampling) is as follows:
Initialize (") = s fori € {1,..., N}

e We meta-train an

. 35 )
Probl S Initialize £€'*) < 0 for i € {1,...,N} 2 | ML_P !aased earned
gt — 0 g'; o e Used to train an MLP on
L1<81; 9) LQ(SQ; 0) Lg(Sg; 9) 4 Task S H ) for : = ]., c. ,N do . 4(58 2.5 PES CIFAR-10.
T T T RNN - HiddenState - RNN Params eV = { dra Sy N (0,071) ¢ 0dd =3 e PES achieves lower
] —e1) ' C 2. -
>8] —> 89—+ 83 —» ee. |MREETSET  Model Params  Hyperparameters o e’ | . teven gz ° S e —— losses, and is more
T T T Learned ;.40 p Learned Optimizer S(Z) L(Z) — unroll(s("’), 0 + E(z)v K) — L s consistent across random
Optimizers Params ) g(" e(?) “0 20k 40k 60k 80k 100k initializations of the
9 H 6 \_ RL  Environment State  Policy Params gp - gPES 4 ﬁ(z)fzg? Meta-Training Iterations learned optimizer.
end for Hyperparameter Optimization
e Dynamical system with state s; governed by parameters 0 g < N{ﬂ g yPErP P
st = f(S¢—1, Xt; 0). We wish to minimize L(0) = Zt 1 Le(s:: 0). DES >% @ Tuning LR schedule for
e BPTT and RTRL are expensive and have high latency; TBPTT suffers 0—0—-ag an MLP on MNIST
from truncation bias; approximations to RTRL have higher variance. e The inner-problem length
e Long unrolls can lead to chaotic or poorly conditioned loss landscapes . a0 is T = 5000, and we
e [ he variance of the _(ZI_U used truncations of
Evolution Strategies | | = length {10, 100
g s —— N=10  —— N=100 PES gradient estimate < 7.2 ength {10,100}

e N=30 —e— N=1000 depends on the e PES can also optimize

o Evolution Strategies (ES) is a method for estimating a descent

direction for arbitrary black-box functions using stochastic finite @ 107 corre.lation between . no.n—dl.fferent|ab|e
differences. O gradients at each unroll. objectives such as
i ~ AES 1 __ e ® On char-level PTB, we 375 _1 0 1 2 >0 validation accuracy
V06N (0.0%1) {L(H)} ~8 T3 LN (0.01) [€L(O + €)] S 10t see two regimes as we
e ES is trivially parallelizable, and thus highly scalable increase #unrolls:
e ES optimizes a Gaussian-smoothed loss surface 10° initial decrease in |
e Helps overcome pathological structure in long-unroll meta-objectives 100 10! 102 103 104 variance, followed by 400 Swimmer-v2 e PES can train a policy
e Can optimize arbitrary black-box functions, e.g., non-differentiable # Unrolls linear increase 350 TR for continuous control
objectives like accuracy rather than loss 300 o using partial unrolls
e However, ES suffers from truncation bias similarly to TBPTT 2 izg 7 —— ES K=1000 o We found that PES is
e Goal: Can we design an algorithm with the benefits of ES, e For each particle, PES uses KF compute, where K is the truncated E 150 ’:’f 1 E:SKIZ:SEO more efficient the?n ES
that does not suffer from truncation bias? unroll length and F is the cost of a forward pass 10| [M46 4 ~-=- ARS - applied to full episodes,
e For each particle, PES stores the state s; and perturbation 50 | o4 OpenAl ES while tru.ncated ES fails
accumulator &;. °0 100K 200K 300K 400K 500K due to bias

Total Environment Steps



