
Unbiased Gradient Estimation in Unrolled Computation 
Graphs with Persistent Evolution Strategies

Paul Vicol, Luke Metz, Jascha Sohl-Dickstein

ICML 2021



● Consider a dynamical system that evolves according to:

Problem Setup: Unrolled Computation Graphs

● How do we learn

Objective:

● How can we optimize the parameters of the dynamical system?

● Problem: Most approaches suffer from truncation bias, high-variance gradients, slow 
updates, or high memory usage



Pathological Meta-Loss Surfaces and ES

Metz et al., 
Understanding and 
correcting pathologies 
in the training of 
learned optimizers. 
ICML 2019.

● Another issue: long unrolls can lead to chaotic or poorly conditioned loss landscapes
○ This is especially common for unrolled optimization

Unroll Length



Pathological Meta-Loss Surfaces and ES

Metz et al., 
Understanding and 
correcting pathologies 
in the training of 
learned optimizers. 
ICML 2019.

● Another issue: long unrolls can lead to chaotic or poorly conditioned loss landscapes
○ This is especially common for unrolled optimization

● Consider optimizing a Gaussian-smoothed meta-objective

● Evolution strategies (ES) is a method for estimating a descent direction using 
stochastic finite differences:

Unroll Length



Pros & Cons of ES

● ES is trivially parallelizable, and thus highly scalable

● We introduce an approach to obtain unbiased gradients from partial unrolls using an 
ES-based approach called Persistent Evolution Strategies (PES)

○ PES retains desirable characteristics like memory-efficiency & loss-surface smoothing

● In principle, using ES on full unrolls of the computation graph would work well
○ Problem: we have to do a full unroll for each parameter update, which is slow

● In practice, ES is applied to truncated unrolls
○ Problem: Suffers from truncation bias similarly to TBPTT

● ES optimizes a Gaussian-smoothed loss surface
● Does not use backprop, so does not require storing states in memory
● Can optimize arbitrary black-box functions, e.g., non-differentiable objectives like 

accuracy rather than loss
● Is highly scalable on parallel compute, and can have low variance with antithetic 

sampling



PES High-Level Overview

● Allows for rapid parameter updates
● Inherits useful properties from ES:

○ Has low memory usage, does not require storing states for backprop
○ Smooths the loss surface, which is useful for unrolled computations

Eliminates bias from the truncations by accumulating correction terms 
over the full sequence of unrolls

PES splits the computation graph into a series of truncated unrolls
Performs an ES-style parameter update after each unroll



PES Derivation: Notation Shift

Unrolled computation graphs depend on shared 
parameters     at every timestep

We drop the dependence on      and explicitly 
include the dependence on each 

In order to account for how the applications of 
contribute to the overall gradient,               we 
use subscripts to distinguish between 
applications of     at different steps, 

We also define 

Then we can write 

Notation shift



PES Derivation 

3

TODO: Update 
to have epsilon 
transpose

TODO: Update 
to the right 
\hat{g} PES 
notation

● Next, we use ES to estimate the gradient

1

How does this expression work? Let’s look at a simple example 
with 2-dimensional theta and T=3 steps



PES Derivation 

3

TODO: Update 
to have epsilon 
transpose

TODO: Update 
to the right 
\hat{g} PES 
notation

● Next, we use ES to estimate the gradient

Apply ES

1

How does this expression work? Let’s look at a simple example 
with 2-dimensional theta and T=3 steps



PES Derivation 

3

TODO: Update 
to have epsilon 
transpose

TODO: Update 
to the right 
\hat{g} PES 
notation

● Next, we use ES to estimate the gradient

Apply ES

1

How does this expression work? Let’s look at a simple example 
with 2-dimensional theta and T=3 steps

Example with 2D theta and T=3 steps:



PES Derivation 

3

TODO: Update 
to have epsilon 
transpose

TODO: Update 
to the right 
\hat{g} PES 
notation

● Next, we use ES to estimate the gradient

Apply ES

1

How does this expression work? Let’s look at a simple example 
with 2-dimensional theta and T=3 steps

Example with 2D theta and T=3 steps:



PES Derivation 

3

TODO: Update 
to have epsilon 
transpose

TODO: Update 
to the right 
\hat{g} PES 
notation

● Next, we use ES to estimate the gradient

Apply ES

1

How does this expression work? Let’s look at a simple example 
with 2-dimensional theta and T=3 steps

Example with 2D theta and T=3 steps:



PES Derivation 2

● PES decomposes into a sum of sequential gradient estimates.
○ Below,      is a matrix whose rows are per-timestep perturbations 

TODO: Update 
to have epsilon 
transpose

TODO: Update 
to the right 
\hat{g} PES 
notation

● Next, we use ES to estimate the gradient

● We obtain unbiased gradient estimates from partial unrolls by: 1) not resetting the particles between 
unrolls, and 2) accumulating the perturbations each particle has experienced over multiple unrolls



PES Derivation 2

Monte Carlo PES Estimate

TODO: Update 
to have epsilon 
transpose

TODO: Update 
to the right 
\hat{g} PES 
notation

PES Estimate w/ Antithetic Sampling

● Next, we use ES to estimate the gradient

● We obtain unbiased gradient estimates from partial unrolls by: 1) not resetting the particles between 
unrolls, and 2) accumulating the perturbations each particle has experienced over multiple unrolls

● PES decomposes into a sum of sequential gradient estimates.
○ Below,      is a matrix whose rows are per-timestep perturbations 



ES & PES Algorithms



Example Implementation in JAX

K-step unroll K-step unroll



PES Variance

● The variance of the PES gradient estimate depends on the correlation between gradients at each unroll

2. If we assume that the 
gradients from each unroll 
are identical, then variance 
scales as             O(cons + 
cons/#unrolls)

1. If we assume that the 
gradients for each unroll 
are i.i.d., then variance 
scales linearly in the 
number of unrolls

We consider several possible scenarios:

3. Real data exhibits 
characteristics of both 
synthetic scenarios



PES Experiments

● Our experiments aim to demonstrate that:
1. PES is unbiased, allowing it to converge to correct solutions that are not found by 

TBPTT or truncated ES
2. Loss surface smoothing induced by PES is beneficial for meta-optimization, 

overcoming erratic meta-loss surfaces
3. PES can target non-differentiable objectives such as validation accuracy

Outer loss surface Optimization trajectory on the 
inner loss surface

Optimization trajectory on the inner loss surfaceSettings of theta on the outer loss surface

First, we demonstrate via a toy 
experiment that PES does not 
suffer from truncation bias, allowing 
it to converge to correct solutions 
that are not found by TBPTT or 
truncated ES.
Then, we apply PES to several 
illustrative scenarios: we use PES 
to meta-train a learned optimizer, 
learn a policy for continuous 
control, and optimize 
hyperparameters. ● We apply PES to several illustrative scenarios:

1. Optimizing hyperparameters
2. Meta-training a learned optimizer
3. Learning a policy for continuous control



Experiments: Influence Balancing

● Synthetic task introduced by Tallec et al. 
(2017), designed to have arbitrarily long-term 
dependencies

● Learn a scalar parameter that has a positive 
influence in the short term but a negative 
influence in the long term

● Truncated algorithms like TBPTT fail as the 
parameter explodes in the wrong direction

● PES performs nearly identically to exact RTRL 
given sufficiently many particles to reduce 
variance

Outer loss surface Optimization trajectory on the 
inner loss surface

Optimization trajectory on the inner loss surfaceSettings of theta on the outer loss surface

* Note that this is intended to show that PES is unbiased; it is not a compute-time comparison



Experiments: LR Optimization for 2D Regression

● We learn a linearly-decaying LR schedule parameterized by:

Outer loss surface Optimization trajectory on the 
inner loss surface

● We defined a toy 2D regression problem that has one global minimum, but many local 
minima to which truncated gradient methods could converge

Optimization trajectory on the inner loss surfaceSettings of theta on the outer loss surface

Meta-Loss Surface



Experiments: MNIST Learning Rate Schedule

● Meta-learning a learning rate schedule for an MLP (784-100-100-10) on MNIST
● Here, the full inner-problem length is T=5000, and we run ES and PES with truncation 

lengths 

Targeting Training Loss Targeting Validation Accuracy



Experiments: Tuning Many Hyperparameters

● 4-layer MLP trained on MNIST, total inner 
problem length T=1000

● Tuning separate LR and momentum for each 
parameter block (weight matrix and bias vector)

○ 20 hyperparameters total

● Random search, truncated ES, and PES are 
run w/ four diff. random seeds

● ES performs poorly compared to RS, because it 
does not move in the correct direction



Training Learned Optimizers

● We meta-train an MLP-based learned 
optimizer as described in Metz et al. (2019)

● This optimizer is used to train a two 
hidden-layer, 128 unit, MLP on CIFAR-10

● Due to PES's unbiased nature, PES achieves 
both lower losses, and is more consistent 
across random initializations of the learned 
optimizer



Learning a Policy for Continuous Control

● PES can be used to train a policy for a 
continuous control problem using partial unrolls

● We found that PES is more efficient than ES 
applied to full episodes, while truncated ES fails 
due to bias

● ES optimizes the parameters of a policy 
directly, by sampling parameters from a 
distribution, running an episode, and estimating 
the gradient

● PES can be used to train a policy for a 
continuous control problem using partial unrolls

● We found that PES is more efficient than ES 
applied to full episodes, while truncated ES fails 
due to bias.

● We plot the Augmented Random Search (ARS) 
V1 result from Mania et al. (2018) to show that 
our full-unroll baseline is comparable to theirs

● The dotted line shows the maximum reward 
reported for the ES approach in Salimans et al. 
(2017), which does not solve the Swimmer task.



Conclusion

● Algorithmically, PES is an easy-to-implement modification of ES
● Provides unbiased gradient estimates from partial unrolls
● Inherits useful characteristics from ES:

○ Parallelizability
○ Works with arbitrary non-differentiable functions
○ Smooths the meta-loss surface

● PES has tractable compute and memory cost
● Can be applied to various unrolled problems (hyperopt, learned optimizers, RL)



Thank you!


