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● Where do we encounter such optimization problems?
○ Training Generative Adversarial Networks (GANs)

○ Game theory: “In a two-player zero sum game defined on a continuous space, the 
equilibrium point is a saddle point.”

Saddle Point Optimization

● Goal: Solve an optimization problem of the form



Saddle Point Optimization

● An optimal saddle point               is characterized by:

● The function f is not necessarily convex in x or concave in y

We’re at a max in y (changing y only 
gives smaller values of f)

We’re at a min in x (changing x only 
gives larger values of f)
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We only look for local saddle points, where the conditions hold in a 
local neighborhood around 



Conditions for Local Optimality

●               is a locally optimal saddle point on         if and only if:

The Hessian is positive definite in x

The Hessian is negative definite in y

There is no negative 
curvature in the x direction

There is no positive curvature 
in the y direction

We’re at a critical/stationary point & &



Simultaneous Gradient Ascent/Descent

● It is known that the gradient method is locally asymptotically stable [25]; but stability 
alone is not sufficient to guarantee convergence to a locally optimal saddle point. 
Through an example, we will later illustrate that the gradient method is indeed stable at 
some undesired stationary points, at which the structural min-max property 1 is not met.

● While a standard trick for escaping saddles in minimization problems consists of adding 
a small perturbation to the gradient, we will demonstrate that this does not guarantee 
avoiding undesired stationary points.

● Classic method: simultaneous gradient ascent/descent:

● The convergence analysis of the above iterate sequence is typically tied to a strong/strict 
convexity-concavity property of the objective function defining the dynamics. Under such 
conditions, the gradient method is guaranteed to converge to a desired saddle point [3].

● This method is stable at some undesired stationary points
○ Undesired = where the function is not a local minimum in x and a maximum in y



Stability

● It is known that the gradient method is locally asymptotically stable [25]; but stability 
alone is not sufficient to guarantee convergence to a locally optimal saddle point. 
Through an example, we will later illustrate that the gradient method is indeed stable at 
some undesired stationary points, at which the structural min-max property 1 is not met.

● While a standard trick for escaping saddles in minimization problems consists of adding 
a small perturbation to the gradient, we will demonstrate that this does not guarantee 
avoiding undesired stationary points.

● The convergence analysis of the above iterate sequence is typically tied to a strong/strict 
convexity-concavity property of the objective function defining the dynamics. Under such 
conditions, the gradient method is guaranteed to converge to a desired saddle point [3].

● A stable stationary point of an optimization dynamic is a point to which we can 
converge with non-vanishing probability

● We would hope that only the solution of our saddle point problem are the stable 
stationary points of our optimization scheme

Local optimality 
condition

Stability
condition

Minimization Saddle Point Opt.

=

Gradient dynamics may introduce 
additional stable points that are not 
locally optimal saddle points



Example: GD Converges to Undesired Stable Points
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Goal:

Stationary points:



Curvature Exploitation for Saddle Point Optimization (CESP)

● How can we escape from undesired stable points?
● If we have not yet found a point that is a minimum in x,                            so                    

has at least one negative eigenvalue → move along the most negative eigendirection

● Modifies simultaneous gradient descent/ascent update with extreme curvature vector:

This means that

This means that



GD & CESP Trajectories

● Comparison of the trajectories of GD and CESP 
● The right plot shows the vector field of the extreme curvature. The curvature in the 

x-dimension is constant and positive, and therefore the extreme curvature is always zero.

GD convergence

CESP convergence



Curvature Exploitation for Linear-Transformed Steps

● They also apply CESP to linearly-transformed gradient steps (in particular Adagrad)

Original linearly-transformed update CESP linearly-transformed update

where is a symmetric,

block-diagonal matrix

where       must be positive definite

● The set of locally optimal saddle points defined by the simultaneous gradient 
ascent/descent updates and the set of stable points of the CESP linearly-transformed 
update are the same.



Standard GAN Training

● Train a small GAN on MNIST
● Compare Adagrad to Adagrad w/ curvature exploitation 10 100

784 10100
784

Min Eigenvalue of Max Eigenvalue of Squared Gradient Norm

Generator Discriminator

Both methods converge



CESP Guarantees

● CESP provably shrinks the set of stable points to the set of locally optimal solutions

Can only converge to locally optimal saddle points



Implementation with Hessian-Vector Products

● Storing and computing the Hessian in high dimensions is intractable
○ Need an efficient method to extract the extreme curvature directions

● Common approach to obtaining the eigenvector corresponding to the largest absolute 
eigenvalue of                   is to run power iterations:

● Where           is normalized after every iteration and 

● Can be computed without finding the Hessian, via Hessian-vector products
● Still expensive: How often do we have to compute the extreme curvature?



Summary

● Gradient-based optimization is used for both minimization and saddle-point problems
● Problem: The presence of undesired stable stationary points that are not local optima 

of the saddle point problem (i.e., minimax problem)

● Approach: Exploit curvature information to escape from these undesired stationary 
points

● Potentially: a way to improve GAN training
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