

Motivation & Summary

- Invertible neural networks (INNs) have many applications: training generative models w/ exact likelihoods, increasing posterior flexibility in VAEs, computing memory-efficient gradients, solving inverse problems, and analyzing robustness.
- These applications rely on the assumption that theoretical invertibility carries through to the numerical instantiation.
- We show that common INN architectures suffer from exploding inverses & can become numerically non-invertible.
- We provide ways to mitigate this instability: 1) enforcing global stability using Lipschitz-constrained INN architectures or 2) regularization to enforce local stability.

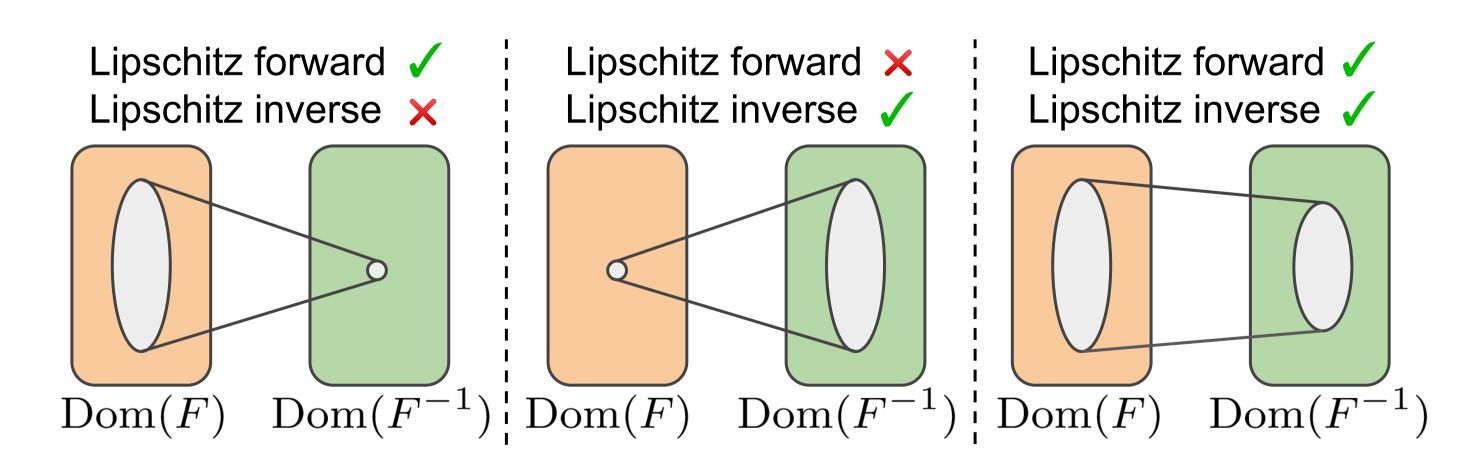
Theory

Additive

Affine

 $F(x)_{I_1} = x_{I_1}$ $F(x)_{I_1} = x_{I_1}$ $F(x)_{I_2} = x_{I_2} + t(x_{I_1})$ $F(x)_{l_2} = x_{l_2} \odot g(s(x_{l_1})) + t(x_{l_1})$

• Computations are carried out with limited precision \rightarrow error is always introduced in both the forward and inverse passes. Instability in either pass will aggravate this imprecision



• There is a global bound on Lip(F) and $Lip(F^{-1})$ for additive blocks, but only local bounds for affine blocks.

Controlling Global Stability

- Additive: Can use spectral norm to control the Lip constant
- Affine: Can increase stability by avoiding scaling by small values. But still no global Lipschitz bound.

Understanding and Mitigating Exploding Inverses in Invertible Neural Networks

Jens Behrmann^{*,1}, Paul Vicol^{*,2,3}, Kuan-Chieh Wang^{*,2,3}, Roger Grosse^{2,3}, Jörn-Henrik Jacobsen^{2,3} ¹University of Bremen, ²University of Toronto, ³Vector Institute

Theory (Contd.)

Controlling Local Stability

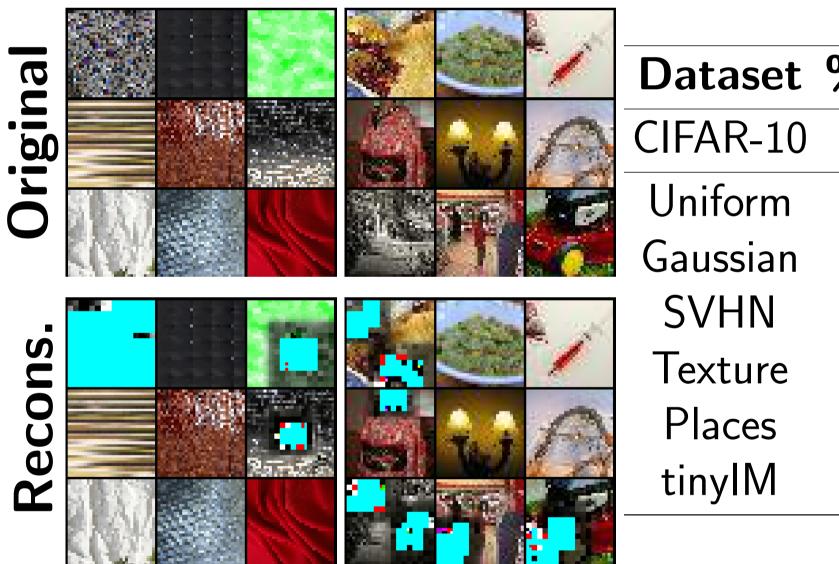
- Use penalty on the Jacobian to enforce local stability
- We propose using an efficient approximation, **Bi-Directional Finite** Differences Regularization
- Normalizing flow (NF) objective has a stabilizing effect:
- Prior: pushes output to have small norm, improving forward stability.
- Log-determinant: increases all singular values, w/ stronger effect on small SVs, improving inverse stability.

INN Instability on OOD Data

- Global invertibility is needed to apply INNs to OOD data.
- INNs can become numerically non-invertible even when trained with NF (despite encouraging local stability)

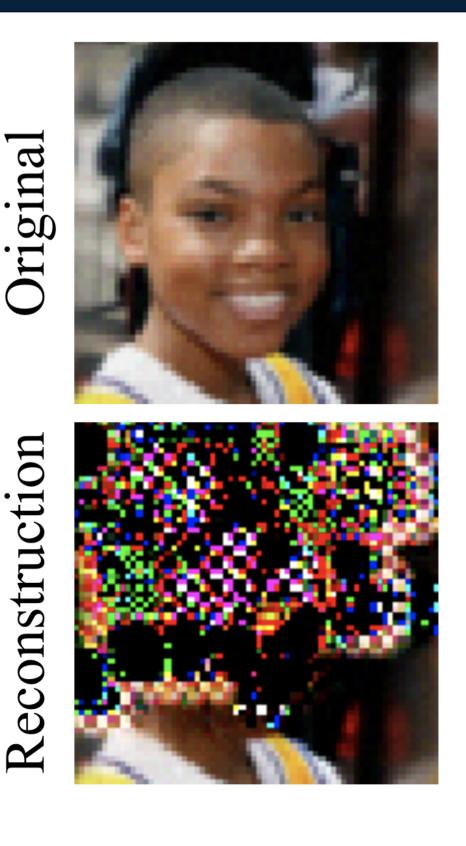
Texture

tinyIM



• Thus, likelihoods computed by Glow are not meaningful

INN Instability in the Data Distribution



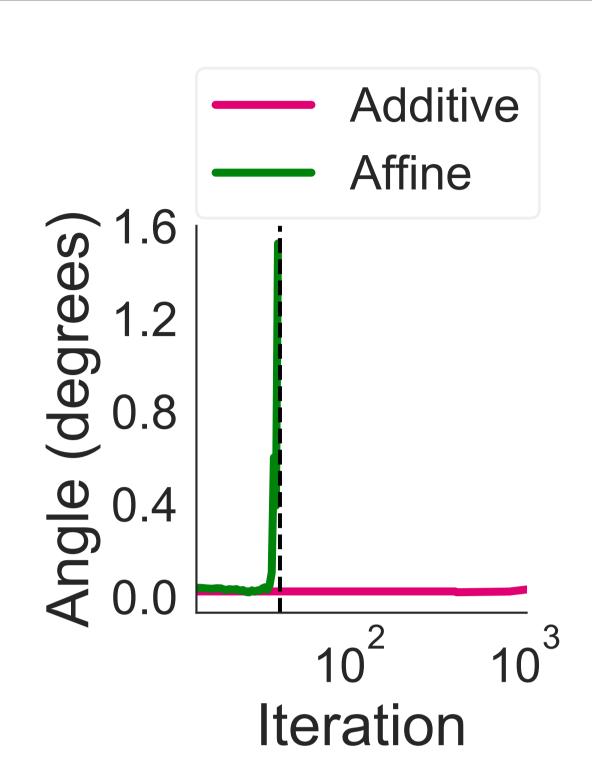
- By optimizing within the dequantization distribution of a datapoint we are able to find regions that are poorly reconstructed by the model.
- Start with x and use Projected Gradient Descent to find a perturbed example x' with high reconstruction error:

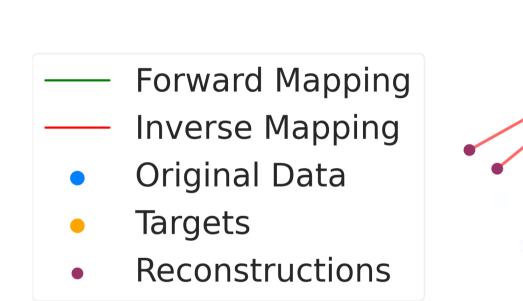
arg max $||x'-x||_{\infty} \leq \epsilon$

Glo	WC	ResFlow		
% Inf	Err	% Inf	Err	
0	6.3e-5	0	2.9e-2	
100	-	0	1.7e-2	
100	-	0	7.2e-3	
0	5.5e-5	0	7.3e-2	
37.0	7.8e-2	0	2.0e-2	
24.9	9.9e-2	0	2.9e-2	
38.9	1.6e-1	0	3.5e-2	

$$||x' - F^{-1}(F(x'))||_2.$$

Supervised Learning w/ Memory-Efficient Gradients





- Exploding inverses on a 2D regression task.
- unstable inverses in supervised learning

Model	Reg.	Inv?	Test Acc	Recons. Err.	Min SV	Max SV
Additive	None	\checkmark	89.73	4.3e-2	6.1e-2	4.4e+3
	FD	\checkmark	89.71	1.1e-3	8.7e-2	2.6e+1
	NF	\checkmark	89.52	9.9e-4	3.9e-2	6.6e+1
Affine	None	X	89.07	Inf	1.9e-12	1.7e+3
	FD	\checkmark	89.47	9.6e-4	9.6e-2	$1.5\mathrm{e}{+1}$
	NF	\checkmark	89.71	1.3e-3	3.5e-2	7.7e+1

- mapping, as the min SV is 1.9e-12.
- harming accuracy

UNIVERSITY OF TORONTO

- INNs enable memory-efficient training by recomputing activations in the backward pass rather than storing them in the forward pass
- Additive and affine INNs achieve similar test accuracy on CIFAR-10, but differ in stability
- While additive is stable, affine gives infinite or nan gradients after a few epochs

Unregularized Regularized

• In contrast to NFs, there is no default mechanism to avoid • Solution: use finite-differences (FD) regularization or add the normalizing flow (NF) objective with small weighting

Instability in the affine model arises from the inverse

• Both FD and NF regularizers stabilize the model without